Experimental investigation of direct non-Hermitian measurement and uncertainty relation towards high-dimensional quantum domain
- URL: http://arxiv.org/abs/2407.05332v1
- Date: Sun, 7 Jul 2024 11:20:27 GMT
- Title: Experimental investigation of direct non-Hermitian measurement and uncertainty relation towards high-dimensional quantum domain
- Authors: Yi-Tao Wang, Zhao-An Wang, Zhi-Peng Li, Xiao-Dong Zeng, Jia-Ming Ren, Wei Liu, Yuan-Ze Yang, Nai-Jie Guo, Lin-Ke Xie, Jun-You Liu, Yu-Hang Ma, Jian-Shun Tang, Chengjie Zhang, Chuan-Feng Li, Guang-Can Guo,
- Abstract summary: We present a non-Hermitian projective protocol and investigate the non-Hermitian uncertainty relation.
We experimentally construct a quantum simulator in the quantum optical circuit and realize the 3-dimensional non-Hermitian quantum measurement on the single-photon qutrit.
- Score: 8.644552479467523
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Non-Hermitian dynamics in quantum systems have unveiled novel phenomena, yet the implementation of valid non-Hermitian quantum measurement remains a challenge, because a universal quantum projective mechanism on the complete but skewed non-Hermitian eigenstates is not explicit in experiment. This limitation hinders the direct acquisition of non-Hermitian observable statistics (e.g., non-Hermitian population dynamics), also constrains investigations of non-Hermitian quantum measurement properties such as uncertainty relation. Here, we address these challenges by presenting a non-Hermitian projective protocol and investigating the non-Hermitian uncertainty relation. We derive the uncertainty relation for pseudo-Hermitian (PH) observables that is generalized beyond the Hermitian ones. We then investigate the projective properties of general quantum states onto complete non-Hermitian eigenvectors, and present a quantum simulating method to apply the valid non-Hermitian projective measurement on a direct-sum dilated space. Subsequently, we experimentally construct a quantum simulator in the quantum optical circuit and realize the 3-dimensional non-Hermitian quantum measurement on the single-photon qutrit. Employing this platform, we explore the uncertainty relation experimentally with different PH metrics. Our non-Hermitian quantum measurement method is state-independent and outputs directly the non-Hermitian quantum projective statistics, paving the way for studies of extensive non-Hermitian observable in quantum domain.
Related papers
- Experimental investigation of the uncertainty relation in pre- and postselected systems [28.111582622994597]
Uncertainty principle is one of the fundamental principles of quantum mechanics.
We experimentally investigate the Robertson-Heisenberg-type uncertainty relation for two incompatible observables in a PPS system.
arXiv Detail & Related papers (2024-12-18T00:29:23Z) - Speed limits and thermodynamic uncertainty relations for quantum systems governed by non-Hermitian Hamiltonian [1.6574413179773757]
Non-Hermitian Hamiltonians play a crucial role in describing open quantum systems and nonequilibrium dynamics.
We derive trade-off relations for systems governed by non-Hermitian Hamiltonians, focusing on the Margolus-Levitin-type and Mandelstam-Tamm-type bounds.
arXiv Detail & Related papers (2024-04-25T08:00:12Z) - Identifying non-Hermitian critical points with quantum metric [2.465888830794301]
The geometric properties of quantum states are encoded by the quantum geometric tensor.
For conventional Hermitian quantum systems, the quantum metric corresponds to the fidelity susceptibility.
We extend this wisdom to the non-Hermitian systems for revealing non-Hermitian critical points.
arXiv Detail & Related papers (2024-04-24T03:36:10Z) - PT-symmetric quantum sensing: advantages and restrictions [3.543616009111265]
The debate on whether non-Hermitian systems are superior to Hermitian counterparts in sensing remains an open question.
It turns out that the existence of advantages of non-Hermitian quantum sensing heavily depends on additional information resources carried by the extra degrees of freedom introduced to construct PT-symmetric quantum sensors.
Our study provides theoretical references for the construction of non-Hermitian quantum sensors with superior performance and has potential applications in research fields of quantum precision measurement and quantum information processing.
arXiv Detail & Related papers (2023-12-13T04:29:41Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [43.80709028066351]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Continuous phase transition induced by non-Hermiticity in the quantum
contact process model [44.58985907089892]
How the property of quantum many-body system especially the phase transition will be affected by the non-hermiticity remains unclear.
We show that there is a continuous phase transition induced by the non-hermiticity in QCP.
We observe that the order parameter and susceptibility display infinitely even for finite size system, since non-hermiticity endows universality many-body system with different singular behaviour from classical phase transition.
arXiv Detail & Related papers (2022-09-22T01:11:28Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Experimental Adiabatic Quantum Metrology with the Heisenberg scaling [21.42706958416718]
We propose an adiabatic scheme on a perturbed Ising spin model with the first order quantum phase transition.
We experimentally implement the adiabatic scheme on the nuclear magnetic resonance and show that the achieved precision attains the Heisenberg scaling.
arXiv Detail & Related papers (2021-02-14T03:08:54Z) - Multiple uncertainty relation for accelerated quantum information [8.598192865991367]
We demonstrate a relativistic protocol of an uncertainty game in the presence of localized fermionic quantum fields inside cavities.
A novel lower bound for entropic uncertainty relations with multiple quantum memories is given in terms of the Holevo quantity.
arXiv Detail & Related papers (2020-04-21T03:29:39Z) - Entropic Uncertainty Relations and the Quantum-to-Classical transition [77.34726150561087]
We aim to shed some light on the quantum-to-classical transition as seen through the analysis of uncertainty relations.
We employ entropic uncertainty relations to show that it is only by the inclusion of imprecision in our model of macroscopic measurements that we can prepare a system with two simultaneously well-defined quantities.
arXiv Detail & Related papers (2020-03-04T14:01:17Z) - An optimal measurement strategy to beat the quantum uncertainty in
correlated system [0.6091702876917281]
Uncertainty principle undermines the precise measurement of incompatible observables.
Entanglement, another unique feature of quantum physics, was found may help to reduce the quantum uncertainty.
arXiv Detail & Related papers (2020-02-23T05:27:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.