Enhancing Hallucination Detection through Perturbation-Based Synthetic Data Generation in System Responses
- URL: http://arxiv.org/abs/2407.05474v1
- Date: Sun, 7 Jul 2024 19:19:32 GMT
- Title: Enhancing Hallucination Detection through Perturbation-Based Synthetic Data Generation in System Responses
- Authors: Dongxu Zhang, Varun Gangal, Barrett Martin Lattimer, Yi Yang,
- Abstract summary: We introduce an approach that automatically generates both faithful and hallucinated outputs by rewriting system responses.
Experimental findings demonstrate that a T5-base model, fine-tuned on our generated dataset, surpasses state-of-the-art zero-shot detectors.
- Score: 25.692970375644435
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Detecting hallucinations in large language model (LLM) outputs is pivotal, yet traditional fine-tuning for this classification task is impeded by the expensive and quickly outdated annotation process, especially across numerous vertical domains and in the face of rapid LLM advancements. In this study, we introduce an approach that automatically generates both faithful and hallucinated outputs by rewriting system responses. Experimental findings demonstrate that a T5-base model, fine-tuned on our generated dataset, surpasses state-of-the-art zero-shot detectors and existing synthetic generation methods in both accuracy and latency, indicating efficacy of our approach.
Related papers
- KSHSeek: Data-Driven Approaches to Mitigating and Detecting Knowledge-Shortcut Hallucinations in Generative Models [17.435794516702256]
Large language models (LLMs) have significantly advanced the development of natural language processing (NLP)
Model hallucinations remain a major challenge in natural language generation (NLG) tasks due to their complex causes.
This work introduces a new paradigm for mitigating specific hallucination issues in generative models, enhancing their robustness and reliability in real-world applications.
arXiv Detail & Related papers (2025-03-25T09:18:27Z) - Monitoring Decoding: Mitigating Hallucination via Evaluating the Factuality of Partial Response during Generation [9.137042895376343]
Large language models are susceptible to hallucinations, generating plausible yet factually incorrect contents.
Existing methods to mitigate such risk often rely on sampling multiple full-length generations.
We introduce Monitoring Decoding, a novel framework that dynamically monitors the generation process.
arXiv Detail & Related papers (2025-03-05T01:51:03Z) - Generating on Generated: An Approach Towards Self-Evolving Diffusion Models [58.05857658085845]
Recursive Self-Improvement (RSI) enables intelligence systems to autonomously refine their capabilities.
This paper explores the application of RSI in text-to-image diffusion models, addressing the challenge of training collapse caused by synthetic data.
arXiv Detail & Related papers (2025-02-14T07:41:47Z) - HuDEx: Integrating Hallucination Detection and Explainability for Enhancing the Reliability of LLM responses [0.12499537119440242]
This paper proposes an explanation enhanced hallucination-detection model, coined as HuDEx.
The proposed model provides a novel approach to integrate detection with explanations, and enable both users and the LLM itself to understand and reduce errors.
arXiv Detail & Related papers (2025-02-12T04:17:02Z) - Self-Correcting Decoding with Generative Feedback for Mitigating Hallucinations in Large Vision-Language Models [66.71616369573715]
Large Vision-Language Models (LVLMs) are prone to generating hallucinatory text responses that do not align with the given visual input.
We introduce self-correcting Decoding with Generative Feedback (DeGF), a novel training-free algorithm that incorporates feedback from text-to-image generative models into the decoding process.
arXiv Detail & Related papers (2025-02-10T03:43:55Z) - Few-Shot Optimized Framework for Hallucination Detection in Resource-Limited NLP Systems [1.0124625066746595]
We introduce DeepSeek Few-shot optimization to enhance weak label generation through iterative prompt engineering.
We achieve high-quality annotations that considerably enhanced the performance of downstream models.
We further fine-tuned the Mistral-7B-Instruct-v0.3 model on these optimized annotations, enabling it to accurately detect hallucinations in resource-limited settings.
arXiv Detail & Related papers (2025-01-28T01:26:22Z) - Time Step Generating: A Universal Synthesized Deepfake Image Detector [0.4488895231267077]
We propose a universal synthetic image detector Time Step Generating (TSG)
TSG does not rely on pre-trained models' reconstructing ability, specific datasets, or sampling algorithms.
We test the proposed TSG on the large-scale GenImage benchmark and it achieves significant improvements in both accuracy and generalizability.
arXiv Detail & Related papers (2024-11-17T09:39:50Z) - Controlled Automatic Task-Specific Synthetic Data Generation for Hallucination Detection [7.167234584287035]
We present a novel approach to automatically generate non-trivial task-specific synthetic datasets for hallucination detection.
Our approach features a two-step generation-selection pipeline, using hallucination pattern guidance and a language style alignment during generation.
Our hallucination detectors trained on synthetic datasets outperform in-context-learning (ICL)-based detectors by a large margin of 32%.
arXiv Detail & Related papers (2024-10-16T06:31:59Z) - Ctrl-GenAug: Controllable Generative Augmentation for Medical Sequence Classification [16.02675888386905]
Ctrl-GenAug is a novel and general generative augmentation framework.
It enables highly semantic- and sequential-customized sequence synthesis and suppresses incorrectly synthesized samples.
arXiv Detail & Related papers (2024-09-25T16:58:19Z) - Optimizing Resource Consumption in Diffusion Models through Hallucination Early Detection [87.22082662250999]
We introduce HEaD (Hallucination Early Detection), a new paradigm designed to swiftly detect incorrect generations at the beginning of the diffusion process.
We demonstrate that using HEaD saves computational resources and accelerates the generation process to get a complete image.
Our findings reveal that HEaD can save up to 12% of the generation time on a two objects scenario.
arXiv Detail & Related papers (2024-09-16T18:00:00Z) - PoLLMgraph: Unraveling Hallucinations in Large Language Models via State Transition Dynamics [51.17512229589]
PoLLMgraph is a model-based white-box detection and forecasting approach for large language models.
We show that hallucination can be effectively detected by analyzing the LLM's internal state transition dynamics.
Our work paves a new way for model-based white-box analysis of LLMs, motivating the research community to further explore, understand, and refine the intricate dynamics of LLM behaviors.
arXiv Detail & Related papers (2024-04-06T20:02:20Z) - Mitigating Object Hallucination in Large Vision-Language Models via
Classifier-Free Guidance [56.04768229686853]
Large Vision-Language Models (LVLMs) tend to hallucinate non-existing objects in the images.
We introduce a framework called Mitigating hallucinAtion via classifieR-Free guIdaNcE (MARINE)
MARINE is both training-free and API-free, and can effectively and efficiently reduce object hallucinations during the generation process.
arXiv Detail & Related papers (2024-02-13T18:59:05Z) - ReEval: Automatic Hallucination Evaluation for Retrieval-Augmented Large Language Models via Transferable Adversarial Attacks [91.55895047448249]
This paper presents ReEval, an LLM-based framework using prompt chaining to perturb the original evidence for generating new test cases.
We implement ReEval using ChatGPT and evaluate the resulting variants of two popular open-domain QA datasets.
Our generated data is human-readable and useful to trigger hallucination in large language models.
arXiv Detail & Related papers (2023-10-19T06:37:32Z) - AutoHall: Automated Hallucination Dataset Generation for Large Language Models [56.92068213969036]
This paper introduces a method for automatically constructing model-specific hallucination datasets based on existing fact-checking datasets called AutoHall.
We also propose a zero-resource and black-box hallucination detection method based on self-contradiction.
arXiv Detail & Related papers (2023-09-30T05:20:02Z) - A Stitch in Time Saves Nine: Detecting and Mitigating Hallucinations of
LLMs by Validating Low-Confidence Generation [76.34411067299331]
Large language models often tend to 'hallucinate' which critically hampers their reliability.
We propose an approach that actively detects and mitigates hallucinations during the generation process.
We show that the proposed active detection and mitigation approach successfully reduces the hallucinations of the GPT-3.5 model from 47.5% to 14.5% on average.
arXiv Detail & Related papers (2023-07-08T14:25:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.