論文の概要: Real-Time Spacecraft Pose Estimation Using Mixed-Precision Quantized Neural Network on COTS Reconfigurable MPSoC
- arxiv url: http://arxiv.org/abs/2407.06170v1
- Date: Thu, 6 Jun 2024 17:36:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 14:07:46.891814
- Title: Real-Time Spacecraft Pose Estimation Using Mixed-Precision Quantized Neural Network on COTS Reconfigurable MPSoC
- Title(参考訳): COTS再構成MPSoCを用いた混合精度量子ニューラルネットワークを用いた実時間宇宙機ポース推定
- Authors: Julien Posso, Guy Bois, Yvon Savaria,
- Abstract要約: 本稿では、市販MPSoCのFPGAコンポーネント上に実装された混合精度量子化ニューラルネットワークを用いて、リアルタイム宇宙船のポーズ推定の先駆的なアプローチを提案する。
我々の貢献には、そのようなアルゴリズムを初めてリアルタイムでオープンソースに実装することが含まれており、効率的な宇宙船ポーズ推定アルゴリズムを広く利用できるようにするための大きな進歩を示している。
- 参考スコア(独自算出の注目度): 0.13108652488669734
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This article presents a pioneering approach to real-time spacecraft pose estimation, utilizing a mixed-precision quantized neural network implemented on the FPGA components of a commercially available Xilinx MPSoC, renowned for its suitability in space applications. Our co-design methodology includes a novel evaluation technique for assessing the layer-wise neural network sensitivity to quantization, facilitating an optimal balance between accuracy, latency, and FPGA resource utilization. Utilizing the FINN library, we developed a bespoke FPGA dataflow accelerator that integrates on-chip weights and activation functions to minimize latency and energy consumption. Our implementation is 7.7 times faster and 19.5 times more energy-efficient than the best-reported values in the existing spacecraft pose estimation literature. Furthermore, our contribution includes the first real-time, open-source implementation of such algorithms, marking a significant advancement in making efficient spacecraft pose estimation algorithms widely accessible. The source code is available at https://github.com/possoj/FPGA-SpacePose.
- Abstract(参考訳): 本稿では、商用の Xilinx MPSoC のFPGA コンポーネント上に実装された混合精度量子化ニューラルネットワークを用いて、実時間宇宙船のポーズ推定における先駆的なアプローチを提案する。
我々の共同設計手法は、量子化に対する階層的なニューラルネットワーク感度を評価するための新しい評価手法を含み、精度、レイテンシ、FPGAリソース利用の最適バランスを容易にする。
FINNライブラリを利用することで、オンチップウェイトとアクティベーション機能を統合し、レイテンシとエネルギー消費を最小限に抑える、高速FPGAデータフローアクセラレータを開発した。
我々の実装は7.7倍、エネルギー効率は既存の宇宙船の最もよく報告された値の19.5倍である。
さらに、我々の貢献には、そのようなアルゴリズムを初めてリアルタイムでオープンソースに実装することが含まれており、効率的な宇宙船ポーズ推定アルゴリズムを広く利用できるようにするための大きな進歩を示している。
ソースコードはhttps://github.com/possoj/FPGA-SpacePoseで入手できる。
関連論文リスト
- Enhancing Dropout-based Bayesian Neural Networks with Multi-Exit on FPGA [20.629635991749808]
本稿では,フィールドプログラマブルゲートアレイ(FPGA)ベースのアクセラレータを効率よく生成するアルゴリズムとハードウェアの共同設計フレームワークを提案する。
アルゴリズムレベルでは、計算とメモリのオーバーヘッドを低減した、新しいマルチエグジット・ドロップアウトベースのベイズNNを提案する。
ハードウェアレベルでは,提案する効率的なベイズNNのためのFPGAベースのアクセラレータを生成するための変換フレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-20T17:08:42Z) - FlowPrecision: Advancing FPGA-Based Real-Time Fluid Flow Estimation with Linear Quantization [18.15754187896287]
本研究では,FPGAを用いたソフトセンサの線形量子化を流体流量推定に適用する。
提案手法は平均二乗誤差を最大10.10%削減し、推論速度を9.39%改善する。
論文 参考訳(メタデータ) (2024-03-04T10:39:58Z) - LitE-SNN: Designing Lightweight and Efficient Spiking Neural Network through Spatial-Temporal Compressive Network Search and Joint Optimization [48.41286573672824]
スパイキングニューラルネットワーク(SNN)は人間の脳の情報処理機構を模倣し、エネルギー効率が高い。
本稿では,空間圧縮と時間圧縮の両方を自動ネットワーク設計プロセスに組み込むLitE-SNNという新しい手法を提案する。
論文 参考訳(メタデータ) (2024-01-26T05:23:11Z) - EPIM: Efficient Processing-In-Memory Accelerators based on Epitome [78.79382890789607]
畳み込みのような機能を提供する軽量神経オペレータであるEpitomeを紹介する。
ソフトウェア側では,PIMアクセラレータ上でのエピトームのレイテンシとエネルギを評価する。
ハードウェア効率を向上させるため,PIM対応層設計手法を提案する。
論文 参考訳(メタデータ) (2023-11-12T17:56:39Z) - FPGA-QHAR: Throughput-Optimized for Quantized Human Action Recognition
on The Edge [0.6254873489691849]
本稿では,8ビット量子化された2ストリームSimpleNet-PyTorch CNNアーキテクチャに基づく,エンドツーエンドHAR拡張型HW/SWアクセラレータの共設計を提案する。
私たちの開発では、部分的にストリーミングデータフローアーキテクチャを使用して、ネットワーク設計やリソース利用のトレードオフよりも高いスループットを実現しています。
提案手法は,ZCU104上の187MHzで約24FPSのリアルタイム推論スループットを用いて,約81%の予測精度を達成した。
論文 参考訳(メタデータ) (2023-11-04T10:38:21Z) - Energy-Efficient On-Board Radio Resource Management for Satellite
Communications via Neuromorphic Computing [59.40731173370976]
本研究は,エネルギー効率のよい脳誘発機械学習モデルのオンボード無線リソース管理への応用について検討する。
関連するワークロードでは、Loihi 2に実装されたスパイクニューラルネットワーク(SNN)の方が精度が高く、CNNベースのリファレンスプラットフォームと比較して消費電力が100ドル以上削減される。
論文 参考訳(メタデータ) (2023-08-22T03:13:57Z) - End-to-end codesign of Hessian-aware quantized neural networks for FPGAs
and ASICs [49.358119307844035]
我々は、共設計ニューラルネットワーク(NN)のトレーニングと実装のためのエンドツーエンドワークフローを開発する。
これにより、ハードウェアにおける効率的なNN実装が、非専門家に、単一のオープンソースワークフローでアクセスできるようになる。
大型ハドロン衝突型加速器(LHC)の40MHz衝突速度で動作しなければならないトリガー決定を含む粒子物理学アプリケーションにおけるワークフローを実演する。
シミュレーションLHC陽子-陽子衝突における高速粒子ジェット用混合精度NNを実装した。
論文 参考訳(メタデータ) (2023-04-13T18:00:01Z) - On the Effective Usage of Priors in RSS-based Localization [56.68864078417909]
本稿では、受信信号強度(RSS)指紋と畳み込みニューラルネットワークに基づくアルゴリズムLocUNetを提案する。
本稿では,密集市街地における局所化問題について検討する。
まず,LocUNetがRx位置やRxの事前分布を学習し,トレーニングデータから送信者(Tx)アソシエーションの好みを学習し,その性能を評価できることを示す。
論文 参考訳(メタデータ) (2022-11-28T00:31:02Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
テンソルネットワーク(TN)アルゴリズムは、パラメタライズド量子回路(PQC)にマッピングできる
本稿では,現実的な量子回路を用いてTN状態を近似する新しいプロトコルを提案する。
その結果、量子回路の逐次的な成長と最適化を含む1つの特定のプロトコルが、他の全ての手法より優れていることが明らかとなった。
論文 参考訳(メタデータ) (2022-09-01T17:08:41Z) - Hardware-Efficient Deconvolution-Based GAN for Edge Computing [1.5229257192293197]
Generative Adversarial Networks (GAN) は、学習したデータ分布に基づいて新しいデータサンプルを生成する最先端のアルゴリズムである。
我々は、スケーラブルなストリーミングデータフローアーキテクチャを用いてFPGA上に実装された量子化デコンボリューションGAN(QDCGAN)のトレーニングのためのHW/SW共同設計手法を提案する。
リソース制約のあるプラットフォーム上での低消費電力推論のために,様々な精度,データセット,ネットワークスケーラビリティを解析した。
論文 参考訳(メタデータ) (2022-01-18T11:16:59Z) - High-Performance FPGA-based Accelerator for Bayesian Recurrent Neural
Networks [2.0631735969348064]
本稿では,ベイジアンLSTMベースのRNNを高速化するFPGAベースのハードウェア設計を提案する。
GPU実装と比較して、FPGAベースの設計では、最大106倍のエネルギー効率で10倍のスピードアップを実現できます。
論文 参考訳(メタデータ) (2021-06-04T14:30:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。