論文の概要: Reflection Equivariant Quantum Neural Networks for Enhanced Image
Classification
- arxiv url: http://arxiv.org/abs/2212.00264v3
- Date: Tue, 19 Sep 2023 07:01:55 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-20 20:32:56.064985
- Title: Reflection Equivariant Quantum Neural Networks for Enhanced Image
Classification
- Title(参考訳): 強調画像分類のための反射同変量子ニューラルネットワーク
- Authors: Maxwell T. West, Martin Sevior, Muhammad Usman
- Abstract要約: 我々は、データに固有の対称性を明示的に尊重する新しい機械学習モデル、いわゆる幾何量子機械学習(GQML)を構築した。
これらのネットワークは、複雑な実世界の画像データセットに対する一般的なアンサーゼを一貫して、そして著しく向上させることができる。
- 参考スコア(独自算出の注目度): 0.7232471205719458
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning is among the most widely anticipated use cases for near-term
quantum computers, however there remain significant theoretical and
implementation challenges impeding its scale up. In particular, there is an
emerging body of work which suggests that generic, data agnostic quantum
machine learning (QML) architectures may suffer from severe trainability
issues, with the gradient of typical variational parameters vanishing
exponentially in the number of qubits. Additionally, the high expressibility of
QML models can lead to overfitting on training data and poor generalisation
performance. A promising strategy to combat both of these difficulties is to
construct models which explicitly respect the symmetries inherent in their
data, so-called geometric quantum machine learning (GQML). In this work, we
utilise the techniques of GQML for the task of image classification, building
new QML models which are equivariant with respect to reflections of the images.
We find that these networks are capable of consistently and significantly
outperforming generic ansatze on complicated real-world image datasets,
bringing high-resolution image classification via quantum computers closer to
reality. Our work highlights a potential pathway for the future development and
implementation of powerful QML models which directly exploit the symmetries of
data.
- Abstract(参考訳): 機械学習は、短期量子コンピュータの最も広く予想されているユースケースの1つであるが、そのスケールアップを妨げる重要な理論的および実装上の課題がある。
特に、一般的なデータ非依存の量子機械学習(QML)アーキテクチャは、量子ビット数で指数関数的に変化する典型的な変分パラメータの勾配によって、厳しいトレーニング容易性の問題に悩まされる可能性があることを示唆する、新たな研究団体がある。
さらに、qmlモデルの高表現性は、トレーニングデータへの過剰フィットと一般化性能の低下につながる可能性がある。
これらの困難に対処するための有望な戦略は、データに固有の対称性を明示的に尊重するモデルを構築することであり、いわゆる幾何量子機械学習(GQML)である。
本研究では,GQMLの手法を画像分類のタスクに応用し,画像のリフレクションに対して等価な新しいQMLモデルを構築する。
これらのネットワークは、複雑な実世界の画像データセットに対する一般的なアンサーゼを一貫して大幅に上回り、量子コンピュータによる高解像度画像分類を現実に近づけることができる。
我々の研究は、データの対称性を直接活用する強力なQMLモデルの開発と実装の潜在的な経路を強調している。
関連論文リスト
- Leveraging Pre-Trained Neural Networks to Enhance Machine Learning with Variational Quantum Circuits [48.33631905972908]
我々は、事前学習されたニューラルネットワークを用いて変分量子回路(VQC)を強化する革新的なアプローチを導入する。
この手法は近似誤差をキュービット数から効果的に分離し、制約条件の必要性を除去する。
我々の結果はヒトゲノム解析などの応用にまで拡張され、我々のアプローチの幅広い適用性を示している。
論文 参考訳(メタデータ) (2024-11-13T12:03:39Z) - Hybrid Classical-Quantum architecture for vectorised image classification of hand-written sketches [0.0]
量子機械学習は、別の方法でデータを学ぶために量子現象をどのように活用するかを研究する。
近年の進歩は、ハイブリッド古典量子モデルは、アーキテクチャの複雑さが低い場合に競争性能を達成できることを示唆している。
本稿では,QMLモデルのテストベッドとして,スケッチ描画のベクトルベース表現を提案する。
論文 参考訳(メタデータ) (2024-07-08T21:51:20Z) - Drastic Circuit Depth Reductions with Preserved Adversarial Robustness
by Approximate Encoding for Quantum Machine Learning [0.5181797490530444]
本研究では, 変分, 遺伝的および行列積状態に基づくアルゴリズムを用いて, 符号化画像データを表す量子状態の効率的な作成法を実装した。
その結果、これらの手法は、標準状態準備実装よりも2桁も浅い回路を用いて、QMLに適したレベルにほぼ準備できることが判明した。
論文 参考訳(メタデータ) (2023-09-18T01:49:36Z) - FAENet: Frame Averaging Equivariant GNN for Materials Modeling [123.19473575281357]
データ変換による任意のモデルE(3)-同変や不変化を実現するために,フレームアラグリング(SFA)に依存したフレキシブルなフレームワークを導入する。
本手法の有効性を理論的および実験的に証明し, 材料モデリングにおける精度と計算スケーラビリティを実証する。
論文 参考訳(メタデータ) (2023-04-28T21:48:31Z) - Problem-Dependent Power of Quantum Neural Networks on Multi-Class
Classification [83.20479832949069]
量子ニューラルネットワーク(QNN)は物理世界を理解する上で重要なツールとなっているが、その利点と限界は完全には理解されていない。
本稿では,多クラス分類タスクにおけるQCの問題依存力について検討する。
我々の研究はQNNの課題依存力に光を当て、その潜在的なメリットを評価するための実践的なツールを提供する。
論文 参考訳(メタデータ) (2022-12-29T10:46:40Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
我々は、データ再ロード技術を用いて、単一のキュービットで学習するケースに焦点を当てる。
我々は、Qiskit量子コンピューティングSDKを用いて、おもちゃと現実世界のデータセットに異なる定式化を実装した。
論文 参考訳(メタデータ) (2022-11-23T18:25:32Z) - Subtleties in the trainability of quantum machine learning models [0.0]
本稿では,変分量子アルゴリズムの勾配スケーリング結果を用いて,量子機械学習モデルの勾配スケーリングについて検討する。
以上の結果から,VQAトレーサビリティの低下がQMLのバレンプラトーなどの問題を引き起こす可能性が示唆された。
論文 参考訳(メタデータ) (2021-10-27T20:28:53Z) - Equivariant vector field network for many-body system modeling [65.22203086172019]
Equivariant Vector Field Network (EVFN) は、新しい同変層と関連するスカラー化およびベクトル化層に基づいて構築されている。
シミュレーションされたニュートン力学系の軌跡を全観測データと部分観測データで予測する手法について検討した。
論文 参考訳(メタデータ) (2021-10-26T14:26:25Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
我々は,量子デバイスのダイナミクスを特徴付ける手法を開発し,デバイスパラメータを学習する。
このアプローチは、数値的に生成された実験データに基づいてトレーニングされた物理に依存しないリカレントニューラルネットワークより優れている。
このデモンストレーションは、ドメイン知識を活用することで、この特徴付けタスクの正確性と効率が向上することを示す。
論文 参考訳(メタデータ) (2021-06-24T15:58:57Z) - Hybrid Quantum-Classical Graph Convolutional Network [7.0132255816377445]
本研究は、HEPデータを学習するためのハイブリッド量子古典グラフ畳み込みネットワーク(QGCNN)を提供する。
提案フレームワークは,パラメータ数の観点から,古典的多層パーセプトロンと畳み込みニューラルネットワークの優位性を示す。
テスト精度に関して、QGCNNは、同じHEPデータセット上の量子畳み込みニューラルネットワークと同等のパフォーマンスを示している。
論文 参考訳(メタデータ) (2021-01-15T16:02:52Z) - Predicting toxicity by quantum machine learning [11.696069523681178]
本研究では, 定量的構造活性相関に基づく221種類のフェノールの毒性予測のためのQMLモデルを開発した。
その結果、量子エンタングルメントによって強化されたデータエンコーディングは、従来のエンタングルよりも表現力が高いことが示唆された。
論文 参考訳(メタデータ) (2020-08-18T02:59:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。