論文の概要: Noise-tolerant public-key quantum money from a classical oracle
- arxiv url: http://arxiv.org/abs/2407.06463v1
- Date: Mon, 8 Jul 2024 23:53:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-10 19:44:58.165079
- Title: Noise-tolerant public-key quantum money from a classical oracle
- Title(参考訳): 古典的なオラクルからの耐雑音性公開鍵量子マネー
- Authors: Peter Yuen,
- Abstract要約: 公開鍵設定において、耐雑音性を実現する方法について初めて示す。
この方式の紙幣は、共役符号化状態を作成し、標準基底ベクトルを置換するユニタリを適用することで鋳造される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum money is the task of verifying the validity of banknotes while ensuring that they cannot be counterfeited. Public-key quantum money allows anyone to perform verification, while the private-key setting restricts the ability to verify to banks, as in Wiesner's original scheme. The current state of technological progress means that errors are impossible to entirely suppress, hence the requirement for noise-tolerant schemes. We show for the first time how to achieve noise-tolerance in the public-key setting. Our techniques follow Aaronson and Christiano's oracle model, where we use the ideas of quantum error correction to extend their scheme: a valid banknote is now a subspace state possibly affected by noise, and verification is performed by using classical oracles to check for membership in "larger spaces." Additionally, a banknote in our scheme is minted by preparing conjugate coding states and applying a unitary that permutes the standard basis vectors.
- Abstract(参考訳): 量子マネー(quantum money)とは、紙幣の正当性を検証し、偽造できないことを保証するタスクである。
公開鍵量子マネーは誰でも検証を行うことができるが、プライベートキー設定は、ウィーズナーの当初のスキームのように、銀行への検証を制限している。
技術的進歩の現在の状況は、エラーを完全に抑制することは不可能であり、従ってノイズ耐性のスキームが要求される。
公開鍵設定において、耐雑音性を実現する方法について初めて示す。
我々の手法はアーロンソンとクリスティアーノのオラクルモデルに従っており、量子誤差補正のアイデアを用いてそれらのスキームを拡張している。
さらに、共役符号化状態を作成し、標準基底ベクトルを置換するユニタリを適用することにより、本方式の紙幣を鋳造する。
関連論文リスト
- Simple Tests of Quantumness Also Certify Qubits [69.96668065491183]
量子性の検定は、古典的検証者が証明者が古典的でないことを(のみ)証明できるプロトコルである。
我々は、あるテンプレートに従う量子性のテストを行い、(Kalai et al., 2022)のような最近の提案を捉えた。
すなわち、同じプロトコルは、証明可能なランダム性や古典的な量子計算のデリゲートといったアプリケーションの中心にあるビルディングブロックであるqubitの認定に使用できる。
論文 参考訳(メタデータ) (2023-03-02T14:18:17Z) - Revocable Cryptography from Learning with Errors [61.470151825577034]
我々は、量子力学の非閉鎖原理に基づいて、キー呼び出し機能を備えた暗号スキームを設計する。
我々は、シークレットキーが量子状態として表現されるスキームを、シークレットキーが一度ユーザから取り消されたら、それらが以前と同じ機能を実行する能力を持たないことを保証して検討する。
論文 参考訳(メタデータ) (2023-02-28T18:58:11Z) - On the (Im)plausibility of Public-Key Quantum Money from
Collision-Resistant Hash Functions [6.164147034988822]
量子マネーと暗号プリミティブの最初のブラックボックス分離について述べる。
具体的には、衝突耐性ハッシュ関数は、公開鍵量子マネースキームを構築するブラックボックスとして利用できないことを示す。
論文 参考訳(メタデータ) (2023-01-23T00:44:54Z) - Another Round of Breaking and Making Quantum Money: How to Not Build It
from Lattices, and More [13.02553999059921]
我々は、公に検証可能な量子マネーに対して、負と正の両方の結果を提供する。
量子マネーと量子ライティングを構築するためのフレームワークを提案する。
フレームワークの潜在的インスタンス化について論じる。
論文 参考訳(メタデータ) (2022-11-22T04:17:32Z) - Publicly verifiable quantum money from random lattices [2.2559617939136505]
ランダム格子上のガウス重畳に基づく量子マネーの公開検証のための暗号スキームを開発する。
我々は格子ベースの暗号から短いベクトル問題の難しさの下で、量子マネーの鍛造不可能性を証明した。
論文 参考訳(メタデータ) (2022-07-26T18:25:29Z) - Quantum Proofs of Deletion for Learning with Errors [91.3755431537592]
完全同型暗号方式として, 完全同型暗号方式を初めて構築する。
我々の主要な技術要素は、量子証明器が古典的検証器に量子状態の形でのLearning with Errors分布からのサンプルが削除されたことを納得させる対話的プロトコルである。
論文 参考訳(メタデータ) (2022-03-03T10:07:32Z) - Franchised Quantum Money [13.772109618082382]
構築が容易な代替の量子マネーである、フランチャイズ量子マネーを導入します。
フランチャイズされた量子マネーは、有用な量子マネースキームの特徴を保っている。
フランチャイズされた量子マネーでは、すべてのユーザーがユニークな秘密の認証キーを受け取り、そのスキームは偽造や妨害に対して安全である。
論文 参考訳(メタデータ) (2021-10-19T05:00:28Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
ノイズチャネルの多くの用途でメッセージを確実に送信するために、回路をエンコードしてデコードする。
すべての量子チャネル$T$とすべての$eps>0$に対して、以下に示すゲートエラー確率のしきい値$p(epsilon,T)$が存在し、$C-epsilon$より大きいレートはフォールトトレラント的に達成可能である。
我々の結果は、遠方の量子コンピュータが高レベルのノイズの下で通信する必要があるような、大きな距離での通信やオンチップでの通信に関係している。
論文 参考訳(メタデータ) (2020-09-15T15:10:50Z) - Piggybacking on Quantum Streams [26.078611404064397]
量子誤り訂正符号によって保護された量子ビットのストリーム上の古典的な情報をピギーバックすることができる。
制御された症候群のシーケンスに対応する意図的なエラーを導入することにより、ピギーバックチャネルを作成することができる。
論文 参考訳(メタデータ) (2020-05-25T16:33:01Z) - Quantum noise protects quantum classifiers against adversaries [120.08771960032033]
量子情報処理におけるノイズは、特に短期的な量子技術において、破壊的で避け難い特徴と見なされることが多い。
量子回路の非偏極雑音を利用して分類を行うことにより、敵に縛られるロバスト性を導出できることを示す。
これは、最も一般的な敵に対して使用できる最初の量子プロトコルである。
論文 参考訳(メタデータ) (2020-03-20T17:56:14Z) - Quantum-secure message authentication via blind-unforgeability [74.7729810207187]
我々は、ブラインド・アンフォージェビリティ(英語版)と呼ばれる量子敵に対する非フォージェビリティ(英語版)の自然な定義を提案する。
この概念は、予測値に「部分的に盲目」アクセスを使用できる敵が存在する場合、関数を予測可能と定義する。
標準構造と減量支援のためのブラインド・アンフォージェビリティの適合性を示す。
論文 参考訳(メタデータ) (2018-03-10T05:31:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。