論文の概要: Greit-HRNet: Grouped Lightweight High-Resolution Network for Human Pose Estimation
- arxiv url: http://arxiv.org/abs/2407.07389v2
- Date: Mon, 7 Oct 2024 08:20:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-08 22:40:08.405635
- Title: Greit-HRNet: Grouped Lightweight High-Resolution Network for Human Pose Estimation
- Title(参考訳): Greit-HRNet:人間の姿勢推定のためのグループ軽量高分解能ネットワーク
- Authors: Junjia Han,
- Abstract要約: 軽量モジュールは高解像度ネットワークにおけるコストのかかるポイントワイズ畳み込みを置き換えるために提案されている。
グループ化チャネル重み付け(GCW)と空間重み付け(GSW)を含むグリットブロックを提案する。
我々は,MS-COCOとMPIIによるポーズ推定データセットの実験を行い,Greit-HRNetの優れた性能を示し,他の最先端軽量ネットワークよりも優れた性能を示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As multi-scale features are necessary for human pose estimation tasks, high-resolution networks are widely applied. To improve efficiency, lightweight modules are proposed to replace costly point-wise convolutions in high-resolution networks, including channel weighting and spatial weighting methods. However, they fail to maintain the consistency of weights and capture global spatial information. To address these problems, we present a Grouped lightweight High-Resolution Network (Greit-HRNet), in which we propose a Greit block including a group method Grouped Channel Weighting (GCW) and a spatial weighting method Global Spatial Weighting (GSW). GCW modules group conditional channel weighting to make weights stable and maintain the high-resolution features with the deepening of the network, while GSW modules effectively extract global spatial information and exchange information across channels. In addition, we apply the Large Kernel Attention (LKA) method to improve the whole efficiency of our Greit-HRNet. Our experiments on both MS-COCO and MPII human pose estimation datasets demonstrate the superior performance of our Greit-HRNet, outperforming other state-of-the-art lightweight networks.
- Abstract(参考訳): 人間のポーズ推定作業にはマルチスケール機能が必要であるため、高解像度ネットワークが広く適用されている。
通信路重み付けや空間重み付けなど,高解像度ネットワークにおけるコストのかかるポイントワイズ畳み込みを置き換えるために,軽量モジュールを提案する。
しかし、重量の一貫性の維持に失敗し、地球規模の空間情報を収集する。
これらの問題に対処するため、Greit-HRNet(Grouped Light High-Resolution Network)を提案し、GCW(Grouped Channel Weighting)とGSW(Global Space Weighting)を含むGreitブロックを提案する。
GCWモジュール群による条件付きチャネル重み付けにより、重み付けを安定させ、ネットワークの深化に伴う高分解能な特徴を維持する一方、GSWモジュールはグローバル空間情報を効果的に抽出し、チャネル間で情報を交換する。
また、Greit-HRNetの全効率を改善するためにLKA(Large Kernel Attention)手法を適用した。
我々のMS-COCOとMPII人のポーズ推定データセットに関する実験は、Greit-HRNetの優れた性能を示し、他の最先端の軽量ネットワークよりも優れています。
関連論文リスト
- ELGC-Net: Efficient Local-Global Context Aggregation for Remote Sensing Change Detection [65.59969454655996]
本稿では,変化領域を正確に推定するために,リッチな文脈情報を利用する効率的な変化検出フレームワークELGC-Netを提案する。
提案するELGC-Netは、リモートセンシング変更検出ベンチマークにおいて、最先端の性能を新たに設定する。
また,ELGC-Net-LWも導入した。
論文 参考訳(メタデータ) (2024-03-26T17:46:25Z) - Hybrid Convolutional and Attention Network for Hyperspectral Image Denoising [54.110544509099526]
ハイパースペクトル画像(HSI)は、ハイパースペクトルデータの効果的な解析と解釈に重要である。
ハイブリット・コンボリューション・アテンション・ネットワーク(HCANet)を提案する。
主流HSIデータセットに対する実験結果は,提案したHCANetの合理性と有効性を示している。
論文 参考訳(メタデータ) (2024-03-15T07:18:43Z) - SINR-Aware Deep Reinforcement Learning for Distributed Dynamic Channel
Allocation in Cognitive Interference Networks [10.514231683620517]
本稿では,複数の大規模ネットワークによるキャリヤ間干渉(ICI)とチャネル再利用を経験する実世界のシステムに焦点を当てる。
CARLTON(Channel Allocation RL To Overlapped Networks)と呼ばれる分散DCAのための新しいマルチエージェント強化学習フレームワークを提案する。
本結果は,従来の最先端手法に比べて優れた効率性を示し,優れた性能とロバストな一般化を示した。
論文 参考訳(メタデータ) (2024-02-17T20:03:02Z) - Hierarchical Multi-Marginal Optimal Transport for Network Alignment [52.206006379563306]
マルチネットワークアライメントは,複数ネットワーク上での協調学習に必須の要件である。
マルチネットワークアライメントのための階層型マルチマージ最適トランスポートフレームワークHOTを提案する。
提案するHOTは,有効性とスケーラビリティの両面で,最先端の大幅な改善を実現している。
論文 参考訳(メタデータ) (2023-10-06T02:35:35Z) - DDCNet: Deep Dilated Convolutional Neural Network for Dense Prediction [0.0]
受容場(ERF)とネットワーク内の空間的特徴の高分解能は、高分解能密度推定を提供することに不可欠である。
空間的特徴の解像度を高く保ちながら、より大きな受容場を提供できるネットワークアーキテクチャを設計するための体系的なアプローチを提案する。
論文 参考訳(メタデータ) (2021-07-09T23:15:34Z) - Planning Spatial Networks [4.499055111059408]
目標指向グラフ構築の問題に対処する。
開始グラフ、大域的目的関数、修正予算が与えられた場合、グラフに追加することで目的を最大に改善するエッジの集合を見つけることが目的である。
この問題は、交通や重要なインフラネットワークといった社会にとって非常に重要なネットワークに出現する。
論文 参考訳(メタデータ) (2021-06-12T13:01:11Z) - Cross-Attention in Coupled Unmixing Nets for Unsupervised Hyperspectral
Super-Resolution [79.97180849505294]
本稿では,HSIの空間分解能を高めるために,CUCaNetというクロスアテンション機構を備えた新しい結合型アンミックスネットワークを提案する。
3つの広く使われているHS-MSデータセットに対して、最先端のHSI-SRモデルと比較実験を行った。
論文 参考訳(メタデータ) (2020-07-10T08:08:20Z) - Policy-GNN: Aggregation Optimization for Graph Neural Networks [60.50932472042379]
グラフニューラルネットワーク(GNN)は、局所的なグラフ構造をモデル化し、隣人からの情報を集約することで階層的なパターンを捉えることを目的としている。
複雑なグラフとスパースな特徴を与えられた各ノードに対して効果的なアグリゲーション戦略を開発することは難しい課題である。
本稿では,GNNのサンプリング手順とメッセージパッシングを複合学習プロセスにモデル化するメタ政治フレームワークであるPolicy-GNNを提案する。
論文 参考訳(メタデータ) (2020-06-26T17:03:06Z) - Proximity-based Networking: Small world overlays optimized with particle
swarm optimization [0.0]
小規模世界のネットワークは、インターネットネットワーク内の情報の拡散とルックアップにおいて、信じられないほど有用である。
本稿では,各ノードの分割鍵空間内のピアの配置に,コード内の地理的位置を組み込んだネットワーク方式を提案する。
提案手法の柔軟性により,様々なSwarmモデルとエージェントが利用可能となる。
論文 参考訳(メタデータ) (2020-06-03T01:40:46Z) - Crowd Counting via Hierarchical Scale Recalibration Network [61.09833400167511]
本稿では,群集カウントの課題に取り組むために,階層型大規模校正ネットワーク(HSRNet)を提案する。
HSRNetは、リッチなコンテキスト依存をモデル化し、複数のスケール関連情報を再検討する。
提案手法は,様々なノイズを選択的に無視し,適切な群集スケールに自動的に焦点を合わせることができる。
論文 参考訳(メタデータ) (2020-03-07T10:06:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。