論文の概要: Why should we ever automate moral decision making?
- arxiv url: http://arxiv.org/abs/2407.07671v1
- Date: Wed, 10 Jul 2024 13:59:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-11 16:22:15.953717
- Title: Why should we ever automate moral decision making?
- Title(参考訳): なぜ道徳的な意思決定を自動化するべきか?
- Authors: Vincent Conitzer,
- Abstract要約: AIが重大な道徳的意味を持つ決定に関与している場合、懸念が生じる。
道徳的推論は広く受け入れられている枠組みを欠いている。
もう一つのアプローチは、人間の道徳的決定からAIを学ぶことである。
- 参考スコア(独自算出の注目度): 30.428729272730727
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While people generally trust AI to make decisions in various aspects of their lives, concerns arise when AI is involved in decisions with significant moral implications. The absence of a precise mathematical framework for moral reasoning intensifies these concerns, as ethics often defies simplistic mathematical models. Unlike fields such as logical reasoning, reasoning under uncertainty, and strategic decision-making, which have well-defined mathematical frameworks, moral reasoning lacks a broadly accepted framework. This absence raises questions about the confidence we can place in AI's moral decision-making capabilities. The environments in which AI systems are typically trained today seem insufficiently rich for such a system to learn ethics from scratch, and even if we had an appropriate environment, it is unclear how we might bring about such learning. An alternative approach involves AI learning from human moral decisions. This learning process can involve aggregating curated human judgments or demonstrations in specific domains, or leveraging a foundation model fed with a wide range of data. Still, concerns persist, given the imperfections in human moral decision making. Given this, why should we ever automate moral decision making -- is it not better to leave all moral decision making to humans? This paper lays out a number of reasons why we should expect AI systems to engage in decisions with a moral component, with brief discussions of the associated risks.
- Abstract(参考訳): 人々は一般的にAIを信頼して、人生の様々な側面で意思決定をするが、AIが重大な道徳的意味を持つ決定に関与しているときに懸念が生じる。
道徳的推論のための正確な数学的枠組みが欠如していることは、これらの懸念を強める。
論理的推論、不確実性の下での推論、明確な数学的枠組みを持つ戦略的意思決定のような分野とは異なり、道徳的推論は広く受け入れられている枠組みを欠いている。
この欠如は、AIの道徳的意思決定能力における信頼性に関する疑問を引き起こす。
今日のAIシステムが一般的に訓練されている環境は、そのようなシステムがゼロから倫理を学ぶには不十分に思える。
もう一つのアプローチは、人間の道徳的決定からAIを学ぶことである。
この学習プロセスは、特定の領域で、キュレートされた人間の判断やデモンストレーションを集約したり、広範囲のデータで供給される基礎モデルを活用することができる。
それでも人間の道徳的判断の不完全さを考えると、懸念は続いている。
これを考えると、なぜ道徳的な決定を自動化すべきなのか -- すべての道徳的な決定を人間に任せるよりはましなのでしょうか?
本稿は、AIシステムが道徳的要素による意思決定に携わるべき理由を、関連するリスクについて簡潔に議論した上で説明する。
関連論文リスト
- Combining AI Control Systems and Human Decision Support via Robustness and Criticality [53.10194953873209]
我々は、逆説(AE)の方法論を最先端の強化学習フレームワークに拡張する。
学習したAI制御システムは、敵のタンパリングに対する堅牢性を示す。
トレーニング/学習フレームワークでは、この技術は人間のインタラクションを通じてAIの決定と説明の両方を改善することができる。
論文 参考訳(メタデータ) (2024-07-03T15:38:57Z) - If our aim is to build morality into an artificial agent, how might we
begin to go about doing so? [0.0]
我々は、最も関連する道徳的パラダイムや課題を含む道徳的エージェントを構築する際に考慮すべきさまざまな側面について議論する。
デザインへのハイブリッドアプローチと、モラルパラダイムを組み合わせる階層的アプローチを含むソリューションを提案する。
論文 参考訳(メタデータ) (2023-10-12T12:56:12Z) - Beyond Bias and Compliance: Towards Individual Agency and Plurality of
Ethics in AI [0.0]
データをラベル付けする方法は、AIの振る舞いに不可欠な役割を担っている、と私たちは主張する。
本稿では,複数の値と個々人の表現の自由を許容する代替経路を提案する。
論文 参考訳(メタデータ) (2023-02-23T16:33:40Z) - When to Make Exceptions: Exploring Language Models as Accounts of Human
Moral Judgment [96.77970239683475]
AIシステムは人間の道徳的判断や決定を理解し、解釈し、予測しなければなりません。
AIの安全性に対する中心的な課題は、人間の道徳心の柔軟性を捉えることだ。
ルール破りの質問応答からなる新しい課題セットを提案する。
論文 参考訳(メタデータ) (2022-10-04T09:04:27Z) - Metaethical Perspectives on 'Benchmarking' AI Ethics [81.65697003067841]
ベンチマークは、人工知能(AI)研究の技術的進歩を測定するための基盤とみられている。
AIの顕著な研究領域は倫理であり、現在、ベンチマークのセットも、AIシステムの「倫理性」を測定する一般的な方法もない。
我々は、現在と将来のAIシステムのアクションを考えるとき、倫理よりも「価値」について話す方が理にかなっていると論じる。
論文 参考訳(メタデータ) (2022-04-11T14:36:39Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2)は、AIレコメンデーションにユーザの信頼度を明確に定量化し視覚化する。
これにより、AIシステムの予測を調べてテストすることで、システムの意思決定に対する信頼の基盤を確立することができる。
論文 参考訳(メタデータ) (2022-01-26T18:53:09Z) - Aligning AI With Shared Human Values [85.2824609130584]
私たちは、正義、幸福、義務、美徳、常識道徳の概念にまたがる新しいベンチマークであるETHICSデータセットを紹介します。
現在の言語モデルは、基本的な人間の倫理的判断を予測できる有望だが不完全な能力を持っている。
私たちの研究は、今日の機械倫理の進歩を示しており、人間の価値観に合わせたAIへの足掛かりを提供する。
論文 参考訳(メタデータ) (2020-08-05T17:59:16Z) - Modelos din\^amicos aplicados \`a aprendizagem de valores em
intelig\^encia artificial [0.0]
この地域の数人の研究者が、人間と環境の保存のための堅牢で有益な、安全なAIの概念を開発した。
人工知能エージェントが人間の価値観に合わせた価値を持っていることは、最も重要である。
おそらくこの難しさは、認知的手法を使って価値を表現するという問題に対処する方法から来ています。
論文 参考訳(メタデータ) (2020-07-30T00:56:11Z) - Evidence-based explanation to promote fairness in AI systems [3.190891983147147]
人は意思決定をし、通常、自分の決定を他の人や何かに説明する必要があります。
意思決定をAIサポートで説明するためには、AIがその決定の一部となっているかを理解する必要がある。
我々は,「意思決定の物語を語る」ためのエビデンスに基づく説明設計アプローチを模索してきた。
論文 参考訳(メタデータ) (2020-03-03T14:22:11Z) - Learning from Learning Machines: Optimisation, Rules, and Social Norms [91.3755431537592]
経済的な実体の行動に最も類似したAIの領域は道徳的に良い意思決定の領域であるようだ。
近年のAIにおけるディープラーニングの成功は、そのような問題を解決するための明示的な仕様よりも暗黙的な仕様の方が優れていることを示唆している。
論文 参考訳(メタデータ) (2019-12-29T17:42:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。