論文の概要: The Approximate Fisher Influence Function: Faster Estimation of Data Influence in Statistical Models
- arxiv url: http://arxiv.org/abs/2407.08169v2
- Date: Thu, 10 Apr 2025 02:33:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-11 12:22:50.962297
- Title: The Approximate Fisher Influence Function: Faster Estimation of Data Influence in Statistical Models
- Title(参考訳): 近似漁業影響関数:統計モデルにおけるデータ影響の高速推定
- Authors: Omri Lev, Ashia C. Wilson,
- Abstract要約: モデル性能における無限小の変化の影響の定量化は、機械学習モデルの理解と改善に不可欠である。
提案手法は,現在の手法よりも計算上の優位性が高いことを示す。
- 参考スコア(独自算出の注目度): 5.893124686141781
- License:
- Abstract: Quantifying the influence of infinitesimal changes in training data on model performance is crucial for understanding and improving machine learning models. In this work, we reformulate this problem as a weighted empirical risk minimization and enhance existing influence function-based methods by using information geometry to derive a new algorithm to estimate influence. Our formulation proves versatile across various applications, and we further demonstrate in simulations how it remains informative even in non-convex cases. Furthermore, we show that our method offers significant computational advantages over current Newton step-based methods.
- Abstract(参考訳): 学習データの無限小変化がモデルパフォーマンスに与える影響の定量化は、機械学習モデルの理解と改善に不可欠である。
本研究では,この問題を重み付けされた経験的リスク最小化として再構成し,情報幾何を用いて影響を推定する新しいアルゴリズムを導出することにより,既存の影響関数に基づく手法を強化する。
我々の定式化は様々な応用において多種多様であることが証明され、非凸の場合においてもどのように情報的であり続けるかをシミュレーションでさらに実証する。
さらに,本手法は,現在のニュートンステップ法よりも計算上の優位性が高いことを示す。
関連論文リスト
- PETScML: Second-order solvers for training regression problems in Scientific Machine Learning [0.22499166814992438]
近年、分析のためのデータ駆動ツールとして、科学機械学習の出現を目撃している。
我々は、ディープラーニングソフトウェアと従来の機械学習技術とのギャップを埋めるために、Portable and Extensible Toolkit for Scientific計算上に構築されたソフトウェアを紹介します。
論文 参考訳(メタデータ) (2024-03-18T18:59:42Z) - Machine Unlearning of Pre-trained Large Language Models [17.40601262379265]
本研究では,大規模言語モデル(LLM)の文脈における「忘れられる権利」の概念について検討する。
我々は、事前学習されたモデルに焦点をあてて、機械学習を重要なソリューションとして探求する。
論文 参考訳(メタデータ) (2024-02-23T07:43:26Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z) - Machine unlearning through fine-grained model parameters perturbation [26.653596302257057]
そこで本研究では,不エクササイズマシンの非学習戦略であるTop-KパラメータとRandom-kパラメータの微粒化を提案する。
また,機械学習の有効性を評価する上での課題にも取り組む。
論文 参考訳(メタデータ) (2024-01-09T07:14:45Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
モデルベースRL(MBRL)の非遅延性能保証のための新規で一般的な理論スキームを提案する。
続いて導いた境界は、モデルシフトとパフォーマンス改善の関係を明らかにします。
さらなる例では、動的に変化する探索からの学習モデルが、最終的なリターンの恩恵をもたらすことが示されている。
論文 参考訳(メタデータ) (2022-10-15T17:57:43Z) - Algorithms that Approximate Data Removal: New Results and Limitations [2.6905021039717987]
本研究では,経験的リスク最小化を用いて学習した機械学習モデルからユーザデータを削除することの問題点について検討する。
計算とメモリ効率を両立させるオンラインアンラーニングアルゴリズムを開発した。
論文 参考訳(メタデータ) (2022-09-25T17:20:33Z) - Making Linear MDPs Practical via Contrastive Representation Learning [101.75885788118131]
マルコフ決定過程(MDP)における次元性の呪いに、低ランク表現を利用することで対処することが一般的である。
本稿では,効率的な表現学習を可能にしつつ,正規化を自動的に保証する線形MDPの代替的定義について考察する。
いくつかのベンチマークにおいて、既存の最先端モデルベースおよびモデルフリーアルゴリズムよりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-07-14T18:18:02Z) - Large Scale Mask Optimization Via Convolutional Fourier Neural Operator
and Litho-Guided Self Training [54.16367467777526]
マスクタスクを効率的に学習できる畳み込みニューラルネットワーク(CFCF)を提案する。
機械学習ベースのフレームワークが初めて、最先端の数値マスクデータセットを上回った。
論文 参考訳(メタデータ) (2022-07-08T16:39:31Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
MACE(Model-Agnostic Counterfactual Explanation)の新たな枠組みを提案する。
MACE法では, 優れた反実例を見つけるための新しいRL法と, 近接性向上のための勾配のない降下法を提案する。
公開データセットの実験は、有効性、空間性、近接性を向上して検証する。
論文 参考訳(メタデータ) (2022-05-31T04:57:06Z) - Physics-informed linear regression is a competitive approach compared to
Machine Learning methods in building MPC [0.8135412538980287]
総じて, ビルのベースラインコントローラと比較して, 暖房・冷却エネルギーの低減効果が良好であることが示唆された。
また, 物理インフォームドARMAXモデルは, 計算負担が低く, 機械学習モデルと比較して, サンプル効率が優れていることも確認した。
論文 参考訳(メタデータ) (2021-10-29T16:56:05Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
本稿では,情報理論的MPCとエントロピー正規化RLとの新たな理論的関連性を示す。
バイアスモデルを利用したQ-ラーニングアルゴリズムを開発した。
論文 参考訳(メタデータ) (2019-12-31T00:29:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。