SciQu: Accelerating Materials Properties Prediction with Automated Literature Mining for Self-Driving Laboratories
- URL: http://arxiv.org/abs/2407.08270v1
- Date: Thu, 11 Jul 2024 08:12:46 GMT
- Title: SciQu: Accelerating Materials Properties Prediction with Automated Literature Mining for Self-Driving Laboratories
- Authors: Anand Babu,
- Abstract summary: Assessing different material properties to predict specific attributes is a fundamental requirement for materials science-based applications.
Our study addresses these challenges by leveraging machine learning to analyze material properties with greater precision and efficiency.
By automating the data extraction process and using the extracted information to train machine learning models, our developed model, SciQu, optimize material properties.
- Score: 0.7673339435080445
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Assessing different material properties to predict specific attributes, such as band gap, resistivity, young modulus, work function, and refractive index, is a fundamental requirement for materials science-based applications. However, the process is time-consuming and often requires extensive literature reviews and numerous experiments. Our study addresses these challenges by leveraging machine learning to analyze material properties with greater precision and efficiency. By automating the data extraction process and using the extracted information to train machine learning models, our developed model, SciQu, optimizes material properties. As a proof of concept, we predicted the refractive index of materials using data extracted from numerous research articles with SciQu, considering input descriptors such as space group, volume, and bandgap with Root Mean Square Error (RMSE) 0.068 and R2 0.94. Thus, SciQu not only predicts the properties of materials but also plays a key role in self-driving laboratories by optimizing the synthesis parameters to achieve precise shape, size, and phase of the materials subjected to the input parameters.
Related papers
- Foundation Model for Composite Materials and Microstructural Analysis [49.1574468325115]
We present a foundation model specifically designed for composite materials.
Our model is pre-trained on a dataset of short-fiber composites to learn robust latent features.
During transfer learning, the MMAE accurately predicts homogenized stiffness, with an R2 score reaching as high as 0.959 and consistently exceeding 0.91, even when trained on limited data.
arXiv Detail & Related papers (2024-11-10T19:06:25Z) - Materials Expert-Artificial Intelligence for Materials Discovery [39.67752644916519]
We introduce "Materials Expert-Artificial Intelligence" (ME-AI) to encapsulate and articulate this human intuition.
The ME-AI learned descriptors independently reproduce expert intuition and expand upon it.
Our success points to the "machine bottling human insight" approach as promising for machine learning-aided material discovery.
arXiv Detail & Related papers (2023-12-05T14:29:18Z) - Large Language Models as Master Key: Unlocking the Secrets of Materials
Science with GPT [9.33544942080883]
This article presents a new natural language processing (NLP) task called structured information inference (SII) to address the complexities of information extraction at the device level in materials science.
We accomplished this task by tuning GPT-3 on an existing perovskite solar cell FAIR dataset with 91.8% F1-score and extended the dataset with data published since its release.
We also designed experiments to predict the electrical performance of solar cells and design materials or devices with targeted parameters using large language models (LLMs)
arXiv Detail & Related papers (2023-04-05T04:01:52Z) - Advancing Reacting Flow Simulations with Data-Driven Models [50.9598607067535]
Key to effective use of machine learning tools in multi-physics problems is to couple them to physical and computer models.
The present chapter reviews some of the open opportunities for the application of data-driven reduced-order modeling of combustion systems.
arXiv Detail & Related papers (2022-09-05T16:48:34Z) - Physics-informed machine learning with differentiable programming for
heterogeneous underground reservoir pressure management [64.17887333976593]
Avoiding over-pressurization in subsurface reservoirs is critical for applications like CO2 sequestration and wastewater injection.
Managing the pressures by controlling injection/extraction are challenging because of complex heterogeneity in the subsurface.
We use differentiable programming with a full-physics model and machine learning to determine the fluid extraction rates that prevent over-pressurization.
arXiv Detail & Related papers (2022-06-21T20:38:13Z) - Tyger: Task-Type-Generic Active Learning for Molecular Property
Prediction [121.97742787439546]
How to accurately predict the properties of molecules is an essential problem in AI-driven drug discovery.
To reduce annotation cost, deep Active Learning methods are developed to select only the most representative and informative data for annotating.
We propose a Task-type-generic active learning framework (termed Tyger) that is able to handle different types of learning tasks in a unified manner.
arXiv Detail & Related papers (2022-05-23T12:56:12Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
In this paper we present a unified deployment pipeline and freedom-to-operate approach that supports all requirements while using basic cross-platform tensor framework and script language engines.
This approach however does not supply the needed procedures and pipelines for the actual deployment of machine learning capabilities in real production grade systems.
arXiv Detail & Related papers (2021-12-22T14:45:37Z) - Prediction of properties of metal alloy materials based on machine
learning [6.827605235800052]
In this paper, we conduct experiments on atomic volume, atomic energy and atomic formation energy of metal alloys.
Through the traditional machine learning models, deep learning network and automated machine learning, we verify the feasibility of machine learning in material property prediction.
The experimental results show that the machine learning can predict the material properties accurately.
arXiv Detail & Related papers (2021-09-20T09:40:36Z) - Machine Learning and Data Analytics for Design and Manufacturing of
High-Entropy Materials Exhibiting Mechanical or Fatigue Properties of
Interest [0.24466725954625884]
The main focus is on alloys and composites with large composition spaces for structural materials.
For each output property of interest, the corresponding driving (input) factors are identified.
The framework assumes the selection of an optimization technique suitable for the application at hand and the data available.
arXiv Detail & Related papers (2020-12-05T19:32:39Z) - Machine Learning for Material Characterization with an Application for
Predicting Mechanical Properties [0.0]
This study is an attempt to investigate the usefulness of machine learning methods for material property prediction.
In industry, material tests like tensile tests, compression tests or creep tests are often time consuming and expensive to perform.
This study also gives an application of machine learning methods on small punch test data for the determination of the property ultimate tensile strength for various materials.
arXiv Detail & Related papers (2020-10-12T20:30:27Z) - Predictive modeling approaches in laser-based material processing [59.04160452043105]
This study aims to automate and forecast the effect of laser processing on material structures.
The focus is centred on the performance of representative statistical and machine learning algorithms.
Results can set the basis for a systematic methodology towards reducing material design, testing and production cost.
arXiv Detail & Related papers (2020-06-13T17:28:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.