Statistical Virtual Temperature of Classical and Quantum Systems
- URL: http://arxiv.org/abs/2410.01286v1
- Date: Wed, 2 Oct 2024 07:14:37 GMT
- Title: Statistical Virtual Temperature of Classical and Quantum Systems
- Authors: Tariq Aziz, Meng-Long Song, Liu Ye, Dong Wang, José J. Gil, Sabre Kais,
- Abstract summary: We introduce a foundational definition of statistical virtual temperature, derived from the spectrum of the Gibbs Kubo-Martin-Schwinger (KMS) state.
We demonstrate that the universal physical bounds between von Neumann entropy and statistical virtual temperature are constrained by these IPs.
- Score: 3.6400809555225115
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we introduce a foundational definition of statistical virtual temperature, derived from the spectrum of the Gibbs Kubo-Martin-Schwinger (KMS) state and formulated using d-1 indices of purity (IP), where d represents the Hilbert space dimension within the C*-algebra framework. We demonstrate that the universal physical bounds between von Neumann entropy and statistical virtual temperature are constrained by these IPs, which may offer broader applications to quantum systems. Additionally, we geometrize classical optical polarization states of an arbitrary electromagnetic field and provide an interpretation of the quantum Mpemba effect, where a quantum system prepared at a higher statistical virtual temperature relaxes to equilibrium faster than one at a lower temperature. This behavior is explained through a novel concept of temperature-resolved entanglement asymmetry. Additionally, we present a geometric interpretation of the third law of thermodynamics using these entropy-temperature diagrams. Nevertheless, the defined statistical virtual temperature inherently exhibits the third law of thermodynamics. We believe that this work has the potential to significantly advance our understanding of classical polarization theory, quantum information theory, and quantum thermodynamics, and it may establish new connections and insights into these fields.
Related papers
- Finite-temperature entanglement and coherence in asymmetric bosonic Josephson junctions [0.0]
We investigate the finite-temperature properties of a bosonic Josephson junction composed of N interacting atoms confined by a quasi-one-dimensional asymmetric double-well potential.<n>We compute numerically the spectral decomposition of the statistical ensemble of states, the thermodynamic and entanglement entropies, the population imbalance.<n>We analyze their dependence on the system parameters, showing in particular how finite temperature and on-site energy asymmetry affect the entanglement and coherence properties of the system.
arXiv Detail & Related papers (2025-06-06T16:36:45Z) - Thermodynamic Signatures of Gaussian Entanglement Beyond Entropy [0.0]
We introduce an entropy-free criterion for entanglement detection in bipartite Gaussian states.<n>We extend our analysis to certain non-Gaussian states and observe analogous energy-based signatures of quantum correlations.
arXiv Detail & Related papers (2025-05-30T13:43:36Z) - Symmetries, Conservation Laws and Entanglement in Non-Hermitian Fermionic Lattices [37.69303106863453]
Non-Hermitian quantum many-body systems feature steady-state entanglement transitions driven by unitary dynamics and dissipation.<n>We show that the steady state is obtained by filling single-particle right eigenstates with the largest imaginary part of the eigenvalue.<n>We illustrate these principles in the Hatano-Nelson model with periodic boundary conditions and the non-Hermitian Su-Schrieffer-Heeger model.
arXiv Detail & Related papers (2025-04-11T14:06:05Z) - Unification of Stochastic and Quantum Thermodynamics in Scalar Field Theory via a Model with Brownian Thermostat [0.0]
We present a systematic procedure to derive a quantum master equation for thermal relaxation in real scalar field theory.
We define heat, work, and entropy in a way that satisfies the first and second laws of quantum thermodynamics.
arXiv Detail & Related papers (2025-03-04T23:48:29Z) - Experimentally Probing Non-Hermitian Spectral Transition and Eigenstate Skewness [19.452215199792924]
Non-Hermitian (NH) systems exhibit intricate spectral topology arising from complex-valued eigenenergies.<n>We present a Green's function-based method that enables the direct measurement and characterization of both complex-valued energy spectra and the left and right eigenstates.
arXiv Detail & Related papers (2025-01-14T14:40:05Z) - Quantum thermalization of translation-invariant systems at high temperature [0.0]
Quantum thermalization describes how closed quantum systems can effectively reach thermal equilibrium.
Despite its ubiquity and conceptual significance, a complete proof of quantum thermalization has remained elusive for several decades.
We prove that quantum thermalization must occur in any qubit system with local interactions satisfying three conditions.
arXiv Detail & Related papers (2024-09-11T18:00:01Z) - Quantum Thermodynamic Integrability for Canonical and non-Canonical Statistics [0.0]
We extend the Carath'eodory principle of the Second Law to quantum thermodynamics with energy levels depending on macroscopic variables.
This extension introduces the concept of Quantum Thermodynamic Integrability (QTI), offering an alternative foundation for statistical mechanics.
arXiv Detail & Related papers (2024-07-11T09:50:39Z) - Theory of Eigenstate Thermalisation [0.0]
The eigenstate thermalization hypothesis (ETH) of Deutsch and Srednicki suggests that this is possible because each eigenstate of the full quantum system acts as a thermal bath to its subsystems.
Our analysis provides a derivation of statistical mechanics which requires neither the concepts of ergodicity or typicality, nor that of entropy.
arXiv Detail & Related papers (2024-06-03T15:41:16Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Quantum thermodynamics of nonequilibrium processes in lattice gauge theories [0.0]
We show how to define thermodynamic quantities using strong-coupling thermodynamics.
Our definitions suit instantaneous quenches, simple nonequilibrium processes undertaken in quantum simulators.
arXiv Detail & Related papers (2024-04-03T18:00:03Z) - Exact finite-time correlation functions for multi-terminal setups: Connecting theoretical frameworks for quantum transport and thermodynamics [11.061707876645764]
Transport in open quantum systems can be explored through various theoretical frameworks, including the quantum master equation, scattering matrix, and Heisenberg equation of motion.
Existing literature treats these approaches independently, lacking a unified perspective.
Our work addresses this gap by clarifying the role and status of these approaches using a minimal single-level quantum dot model in a two-terminal setup.
arXiv Detail & Related papers (2023-12-22T21:09:18Z) - The Tempered Hilbert Simplex Distance and Its Application To Non-linear
Embeddings of TEMs [36.135201624191026]
We introduce three different parameterizations of finite discrete TEMs via Legendre functions of the negative tempered entropy function.
Similar to the Hilbert geometry, the tempered Hilbert distance is characterized as a $t$-symmetrization of the oriented tempered Funk distance.
arXiv Detail & Related papers (2023-11-22T15:24:29Z) - Violation of Detailed Balance in Quantum Open Systems [0.0]
We consider the dynamics of a quantum system immersed in a dilute gas at thermodynamics equilibrium.
It is shown that the Gibbs state at the bath temperature is always stationary while the detailed balance condition at this state can be violated beyond the Born approximation.
arXiv Detail & Related papers (2022-11-06T09:50:53Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Maximum entropy quantum state distributions [58.720142291102135]
We go beyond traditional thermodynamics and condition on the full distribution of the conserved quantities.
The result are quantum state distributions whose deviations from thermal states' get more pronounced in the limit of wide input distributions.
arXiv Detail & Related papers (2022-03-23T17:42:34Z) - Quantum correlations, entanglement spectrum and coherence of
two-particle reduced density matrix in the Extended Hubbard Model [62.997667081978825]
We study the ground state properties of the one-dimensional extended Hubbard model at half-filling.
In particular, in the superconducting region, we obtain that the entanglement spectrum signals a transition between a dominant singlet (SS) to triplet (TS) pairing ordering in the system.
arXiv Detail & Related papers (2021-10-29T21:02:24Z) - Thermalisation Dynamics and Spectral Statistics of Extended Systems with
Thermalising Boundaries [0.0]
We study thermalisation and spectral properties of extended systems connected, through their boundaries, to a thermalising Markovian bath.
We show that the evolution of local observables and the spectral form factor are determined by the same quantum channel.
We provide a perturbative characterisation of the dynamics and, in particular, of the time-scale for thermalisation.
arXiv Detail & Related papers (2021-08-17T16:22:05Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z) - Exact thermal properties of free-fermionic spin chains [68.8204255655161]
We focus on spin chain models that admit a description in terms of free fermions.
Errors stemming from the ubiquitous approximation are identified in the neighborhood of the critical point at low temperatures.
arXiv Detail & Related papers (2021-03-30T13:15:44Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Temperature of a finite-dimensional quantum system [68.8204255655161]
A general expression for the temperature of a finite-dimensional quantum system is deduced from thermodynamic arguments.
Explicit formulas for the temperature of two and three-dimensional quantum systems are presented.
arXiv Detail & Related papers (2020-05-01T07:47:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.