Improve Load Forecasting in Energy Communities through Transfer Learning using Open-Access Synthetic Profiles
- URL: http://arxiv.org/abs/2407.08434v1
- Date: Thu, 11 Jul 2024 12:17:31 GMT
- Title: Improve Load Forecasting in Energy Communities through Transfer Learning using Open-Access Synthetic Profiles
- Authors: Lukas Moosbrugger, Valentin Seiler, Gerhard Huber, Peter Kepplinger,
- Abstract summary: A 1% reduction in forecast error for a 10 GW energy utility can save up to $ 1.6 million annually.
We propose to pre-train the load prediction models with open-access synthetic load profiles using transfer learning techniques.
- Score: 1.124958340749622
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: According to a conservative estimate, a 1% reduction in forecast error for a 10 GW energy utility can save up to $ 1.6 million annually. In our context, achieving precise forecasts of future power consumption is crucial for operating flexible energy assets using model predictive control approaches. Specifically, this work focuses on the load profile forecast of a first-year energy community with the common practical challenge of limited historical data availability. We propose to pre-train the load prediction models with open-access synthetic load profiles using transfer learning techniques to tackle this challenge. Results show that this approach improves both, the training stability and prediction error. In a test case with 74 households, the prediction mean squared error (MSE) decreased from 0.34 to 0.13, showing transfer learning based on synthetic load profiles to be a viable approach to compensate for a lack of historic data.
Related papers
- Load Forecasting for Households and Energy Communities: Are Deep Learning Models Worth the Effort? [0.0]
This study provides an extensive benchmark of state-of-the-art deep learning models for short-term load forecasting in energy communities.
LSTM, xLSTM, and Transformers are compared with benchmarks such as KNNs, synthetic load models, and persistence forecasting models.
arXiv Detail & Related papers (2025-01-09T06:29:50Z) - Hybrid Forecasting of Geopolitical Events [71.73737011120103]
SAGE is a hybrid forecasting system that combines human and machine generated forecasts.
The system aggregates human and machine forecasts weighting both for propinquity and based on assessed skill.
We show that skilled forecasters who had access to machine-generated forecasts outperformed those who only viewed historical data.
arXiv Detail & Related papers (2024-12-14T22:09:45Z) - Forecast-PEFT: Parameter-Efficient Fine-Tuning for Pre-trained Motion Forecasting Models [68.23649978697027]
Forecast-PEFT is a fine-tuning strategy that freezes the majority of the model's parameters, focusing adjustments on newly introduced prompts and adapters.
Our experiments show that Forecast-PEFT outperforms traditional full fine-tuning methods in motion prediction tasks.
Forecast-FT further improves prediction performance, evidencing up to a 9.6% enhancement over conventional baseline methods.
arXiv Detail & Related papers (2024-07-28T19:18:59Z) - Efficient mid-term forecasting of hourly electricity load using generalized additive models [0.0]
We propose a novel forecasting method using Generalized Additive Models (GAMs) built from interpretable P-splines and enhanced with autoregressive post-processing.
The proposed model is evaluated on load data from 24 European countries.
arXiv Detail & Related papers (2024-05-27T11:41:41Z) - Benchmarks and Custom Package for Energy Forecasting [55.460452605056894]
Energy forecasting aims to minimize the cost of subsequent tasks such as power grid dispatch.
In this paper, we collected large-scale load datasets and released a new renewable energy dataset.
We conducted extensive experiments with 21 forecasting methods in these energy datasets at different levels under 11 evaluation metrics.
arXiv Detail & Related papers (2023-07-14T06:50:02Z) - Learning Sample Difficulty from Pre-trained Models for Reliable
Prediction [55.77136037458667]
We propose to utilize large-scale pre-trained models to guide downstream model training with sample difficulty-aware entropy regularization.
We simultaneously improve accuracy and uncertainty calibration across challenging benchmarks.
arXiv Detail & Related papers (2023-04-20T07:29:23Z) - A Hybrid Model for Forecasting Short-Term Electricity Demand [59.372588316558826]
Currently the UK Electric market is guided by load (demand) forecasts published every thirty minutes by the regulator.
We present HYENA: a hybrid predictive model that combines feature engineering (selection of the candidate predictor features), mobile-window predictors and LSTM encoder-decoders.
arXiv Detail & Related papers (2022-05-20T22:13:25Z) - Appliance Level Short-term Load Forecasting via Recurrent Neural Network [6.351541960369854]
We present an STLF algorithm for efficiently predicting the power consumption of individual electrical appliances.
The proposed method builds upon a powerful recurrent neural network (RNN) architecture in deep learning.
arXiv Detail & Related papers (2021-11-23T16:56:37Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
In real-time forecasting in public health, data collection is a non-trivial and demanding task.
'Backfill' phenomenon and its effect on model performance has been barely studied in the prior literature.
We formulate a novel problem and neural framework Back2Future that aims to refine a given model's predictions in real-time.
arXiv Detail & Related papers (2021-06-08T14:48:20Z) - Federated Learning for Short-term Residential Energy Demand Forecasting [4.769747792846004]
Energy demand forecasting is an essential task performed within the energy industry to help balance supply with demand and maintain a stable load on the electricity grid.
As supply transitions towards less reliable renewable energy generation, smart meters will prove a vital component to aid these forecasting tasks.
However, smart meter take-up is low among privacy-conscious consumers that fear intrusion upon their fine-grained consumption data.
arXiv Detail & Related papers (2021-05-27T17:33:09Z) - Probabilistic Load Forecasting Based on Adaptive Online Learning [7.373617024876726]
This paper presents a method for probabilistic load forecasting based on the adaptive online learning of hidden Markov models.
We propose learning and forecasting techniques with theoretical guarantees, and experimentally assess their performance in multiple scenarios.
The results show that the proposed method can significantly improve the performance of existing techniques for a wide range of scenarios.
arXiv Detail & Related papers (2020-11-30T12:02:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.