Covariate Assisted Entity Ranking with Sparse Intrinsic Scores
- URL: http://arxiv.org/abs/2407.08814v1
- Date: Tue, 9 Jul 2024 19:58:54 GMT
- Title: Covariate Assisted Entity Ranking with Sparse Intrinsic Scores
- Authors: Jianqing Fan, Jikai Hou, Mengxin Yu,
- Abstract summary: We introduce novel model identification conditions and examine the regularized penalized Maximum Likelihood Estimator statistical rates.
We also apply our method to the goodness-of-fit test for models with no latent intrinsic scores.
- Score: 3.2839905453386162
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper addresses the item ranking problem with associate covariates, focusing on scenarios where the preference scores can not be fully explained by covariates, and the remaining intrinsic scores, are sparse. Specifically, we extend the pioneering Bradley-Terry-Luce (BTL) model by incorporating covariate information and considering sparse individual intrinsic scores. Our work introduces novel model identification conditions and examines the regularized penalized Maximum Likelihood Estimator (MLE) statistical rates. We then construct a debiased estimator for the penalized MLE and analyze its distributional properties. Additionally, we apply our method to the goodness-of-fit test for models with no latent intrinsic scores, namely, the covariates fully explaining the preference scores of individual items. We also offer confidence intervals for ranks. Our numerical studies lend further support to our theoretical findings, demonstrating validation for our proposed method
Related papers
- Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
Cross-modal retrieval relies on well-matched large-scale datasets that are laborious in practice.
We introduce a novel noisy correspondence learning framework, namely textbfSelf-textbfReinforcing textbfErrors textbfMitigation (SREM)
arXiv Detail & Related papers (2023-12-27T09:03:43Z) - Sample Complexity Bounds for Score-Matching: Causal Discovery and
Generative Modeling [82.36856860383291]
We demonstrate that accurate estimation of the score function is achievable by training a standard deep ReLU neural network.
We establish bounds on the error rate of recovering causal relationships using the score-matching-based causal discovery method.
arXiv Detail & Related papers (2023-10-27T13:09:56Z) - Robust Outlier Rejection for 3D Registration with Variational Bayes [70.98659381852787]
We develop a novel variational non-local network-based outlier rejection framework for robust alignment.
We propose a voting-based inlier searching strategy to cluster the high-quality hypothetical inliers for transformation estimation.
arXiv Detail & Related papers (2023-04-04T03:48:56Z) - Bayes Classification using an approximation to the Joint Probability
Distribution of the Attributes [1.0660480034605242]
We propose an approach that estimates conditional probabilities using information in the neighbourhood of the test sample.
We illustrate the performance of the proposed approach on a wide range of datasets taken from the University of California at Irvine (UCI) Machine Learning Repository.
arXiv Detail & Related papers (2022-05-29T22:24:02Z) - Denoising Likelihood Score Matching for Conditional Score-based Data
Generation [22.751924447125955]
We propose a novel training objective called Denoising Likelihood Score Matching (DLSM) loss to match the gradients of the true log likelihood density.
Our experimental evidence shows that the proposed method outperforms the previous methods noticeably in terms of several key evaluation metrics.
arXiv Detail & Related papers (2022-03-27T04:37:54Z) - Deconfounding Scores: Feature Representations for Causal Effect
Estimation with Weak Overlap [140.98628848491146]
We introduce deconfounding scores, which induce better overlap without biasing the target of estimation.
We show that deconfounding scores satisfy a zero-covariance condition that is identifiable in observed data.
In particular, we show that this technique could be an attractive alternative to standard regularizations.
arXiv Detail & Related papers (2021-04-12T18:50:11Z) - Exploiting Sample Uncertainty for Domain Adaptive Person
Re-Identification [137.9939571408506]
We estimate and exploit the credibility of the assigned pseudo-label of each sample to alleviate the influence of noisy labels.
Our uncertainty-guided optimization brings significant improvement and achieves the state-of-the-art performance on benchmark datasets.
arXiv Detail & Related papers (2020-12-16T04:09:04Z) - Probabilistic Anchor Assignment with IoU Prediction for Object Detection [9.703212439661097]
In object detection, determining which anchors to assign as positive or negative samples, known as anchor assignment, has been revealed as a core procedure that can significantly affect a model's performance.
We propose a novel anchor assignment strategy that adaptively separates anchors into positive and negative samples for a ground truth bounding box according to the model's learning status.
arXiv Detail & Related papers (2020-07-16T04:26:57Z) - Robust Bayesian Classification Using an Optimistic Score Ratio [18.047694351309204]
We use an optimistic score ratio for robust binary classification when there is limited information on the class-conditional, or contextual, distribution.
The optimistic score searches for the distribution that is most plausible to explain the observed outcomes in the testing sample.
arXiv Detail & Related papers (2020-07-08T22:25:29Z) - Nonparametric Score Estimators [49.42469547970041]
Estimating the score from a set of samples generated by an unknown distribution is a fundamental task in inference and learning of probabilistic models.
We provide a unifying view of these estimators under the framework of regularized nonparametric regression.
We propose score estimators based on iterative regularization that enjoy computational benefits from curl-free kernels and fast convergence.
arXiv Detail & Related papers (2020-05-20T15:01:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.