論文の概要: Benchmarking quantum computers
- arxiv url: http://arxiv.org/abs/2407.08828v1
- Date: Thu, 11 Jul 2024 19:25:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 01:46:09.520956
- Title: Benchmarking quantum computers
- Title(参考訳): 量子コンピュータのベンチマーク
- Authors: Timothy Proctor, Kevin Young, Andrew D. Baczewski, Robin Blume-Kohout,
- Abstract要約: 優れたベンチマークによって、科学者、エンジニア、プログラマ、ユーザは、コンピュータシステムのパワーを理解することができます。
悪いベンチマークは研究を誤って誘導し、進歩を阻害する。
ベンチマークとベンチマークの役割と、優れたベンチマークがいかに進歩を駆動し、測定できるかについて論じる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid pace of development in quantum computing technology has sparked a proliferation of benchmarks for assessing the performance of quantum computing hardware and software. Good benchmarks empower scientists, engineers, programmers, and users to understand a computing system's power, but bad benchmarks can misdirect research and inhibit progress. In this Perspective, we survey the science of quantum computer benchmarking. We discuss the role of benchmarks and benchmarking, and how good benchmarks can drive and measure progress towards the long-term goal of useful quantum computations, i.e., "quantum utility". We explain how different kinds of benchmark quantify the performance of different parts of a quantum computer, we survey existing benchmarks, critically discuss recent trends in benchmarking, and highlight important open research questions in this field.
- Abstract(参考訳): 量子コンピューティング技術の急速な開発ペースは、量子コンピューティングハードウェアとソフトウェアの性能を評価するためのベンチマークの急増を引き起こした。
優れたベンチマークは、科学者、エンジニア、プログラマ、ユーザに対して、コンピュータシステムのパワーを理解する力を与えます。
本稿では,量子コンピュータベンチマークの科学を概観する。
我々は、ベンチマークとベンチマークの役割、そして優れたベンチマークが、有用な量子計算の長期的な目標、すなわち「量子ユーティリティ」に向かってどのように進歩を駆動し、測定できるかについて議論する。
我々は、量子コンピュータの異なる部分のパフォーマンスの定量化方法を説明し、既存のベンチマークを調査し、ベンチマークの最近のトレンドを批判的に議論し、この分野における重要なオープンな研究課題を強調する。
関連論文リスト
- Technology and Performance Benchmarks of IQM's 20-Qubit Quantum Computer [56.435136806763055]
IQM量子コンピュータはQPUと他のフルスタック量子コンピュータの両方をカバーする。
焦点は、Garnet QPUとそのアーキテクチャを特徴とする20量子ビットの量子コンピュータであり、最大150量子ビットまでスケールする。
QPUとシステムレベルベンチマークは、中央値の2キュービットゲート忠実度99.5%、グリーンバーガー・ホーネ・ザイリンガー(GHZ)状態の20キュービット全てを真のエンハングリングする。
論文 参考訳(メタデータ) (2024-08-22T14:26:10Z) - Benchmarking Quantum Computers: Towards a Standard Performance Evaluation Approach [0.7499722271664147]
我々は、古典的なプロセッサベンチマークとそれらを構成するメトリクスの両方の最も重要な側面についてレビューする。
量子コンピューティングのパラダイムを特徴付ける本質的な特性を解析する。
本稿では,量子ベンチマークの一般的なガイドラインを提案する。
論文 参考訳(メタデータ) (2024-07-15T17:39:59Z) - Assessing and Advancing the Potential of Quantum Computing: A NASA Case Study [11.29246196323319]
我々は、量子コンピューティングの可能性を評価し、前進させるNASAの取り組みについて説明する。
本稿では,近・長期のアルゴリズムの進歩と,現在のハードウェアとシミュレーションによる探索結果について論じる。
この研究には物理にインスパイアされた古典的アルゴリズムも含まれており、今日のアプリケーションスケールで使用することができる。
論文 参考訳(メタデータ) (2024-06-21T19:05:42Z) - QuAS: Quantum Application Score for benchmarking the utility of quantum computers [0.0]
本稿では,Quantum Application Score (QuAS) と呼ばれる改訂された総合的スコア法を提案する。
本稿では,量子コンピュータの実用性をよりよく評価するアプリケーションレベルの計量値を得る方法について論じる。
D-WaveやIBM、量子インスパイアやリゲッティの量子シミュレータなど、さまざまなハードウェアプラットフォーム上で新しいメトリクスを評価する。
論文 参考訳(メタデータ) (2024-06-06T09:39:58Z) - The QUATRO Application Suite: Quantum Computing for Models of Human
Cognition [49.038807589598285]
量子コンピューティング研究のための新しい種類のアプリケーション -- 計算認知モデリング -- をアンロックします。
我々は、認知モデルから量子コンピューティングアプリケーションのコレクションであるQUATROをリリースする。
論文 参考訳(メタデータ) (2023-09-01T17:34:53Z) - Iterative Qubits Management for Quantum Index Searching in a Hybrid
System [56.39703478198019]
IQuCSは、量子古典ハイブリッドシステムにおけるインデックス検索とカウントを目的としている。
我々はQiskitでIQuCSを実装し、集中的な実験を行う。
その結果、量子ビットの消費を最大66.2%削減できることが示されている。
論文 参考訳(メタデータ) (2022-09-22T21:54:28Z) - Multi-disk clutch optimization using quantum annealing [34.82692226532414]
クラッチ製造における実用上の重要な課題を解くために,新しい量子アルゴリズムを開発した。
量子最適化が製造業における実際の産業応用においてどのように役割を果たせるかを示す。
論文 参考訳(メタデータ) (2022-08-11T16:34:51Z) - QPack Scores: Quantitative performance metrics for application-oriented
quantum computer benchmarking [1.0323063834827415]
本稿では,量子コンピュータとシミュレータ用のアプリケーション指向クロスプラットフォームベンチマークスイートであるQPackのベンチマークスコア定義について述べる。
さまざまな量子コンピュータシミュレータの比較が行われ、ローカルおよびベンダーのリモートクラウドサービス上で実行される。
論文 参考訳(メタデータ) (2022-05-24T15:18:24Z) - Quantum computing hardware for HEP algorithms and sensing [36.67390040418004]
量子情報科学は、量子力学の原理を利用して、現在のコンピュータプラットフォームで非常に難解な複雑な計算アルゴリズムを実現する。
FermilabのSuperconducting Quantum Materials and Systems (SQMS) Centerは、量子コンピューティングとセンシングのブレークスルーを提供する。
我々は,HEPアルゴリズムにおける2つの最も有望な超伝導量子アーキテクチャ,すなわち,平面デバイスに結合したトランスモンデバイスと超伝導3Dキャビティによって支持されるマルチレベルシステム(任意のNエネルギーレベルを持つ量子)について論じる。
論文 参考訳(メタデータ) (2022-04-19T01:37:36Z) - Application-Oriented Performance Benchmarks for Quantum Computing [0.0]
ベンチマークスイートは、広く使用可能なように設計されている。
我々の手法は、今後5年以内に出現するであろう量子コンピューティングハードウェアの進歩を予想するために構築されている。
論文 参考訳(メタデータ) (2021-10-07T01:45:06Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
小型地震インバージョン問題を解決するために,D波量子アニールに量子アルゴリズムを適用した。
量子コンピュータによって達成される精度は、少なくとも古典的コンピュータと同程度である。
論文 参考訳(メタデータ) (2020-05-06T14:18:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。