Performance Comparison of Various Modes of Advanced Encryption Standard
- URL: http://arxiv.org/abs/2407.09490v1
- Date: Wed, 22 May 2024 01:09:49 GMT
- Title: Performance Comparison of Various Modes of Advanced Encryption Standard
- Authors: Abel C. H. Chen,
- Abstract summary: This study proposes a normalized Gini impurity (NGI) to verify the security of each mode.
This study primarily compares the Electronic Codebook (ECB) mode, Cipher Block Chaining (CBC) mode, Counter (CTR) mode, Counter with CBC-Message Authentication Code (MAC) mode, and Galois Counter Mode (GCM)
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the maturation of quantum computing technology, many cryptographic methods are gradually facing threats from quantum computing. Although the Grover algorithm can accelerate search speeds, current research indicates that the Advanced Encryption Standard (AES) method can still enhance security by increasing the length of the secret key. However, the AES method involves multiple modes in implementation, and not all modes are secure. Therefore, this study proposes a normalized Gini impurity (NGI) to verify the security of each mode, using encrypted images as a case study for empirical analysis. Furthermore, this study primarily compares the Electronic Codebook (ECB) mode, Cipher Block Chaining (CBC) mode, Counter (CTR) mode, Counter with CBC-Message Authentication Code (MAC) (CCM) mode, and Galois Counter Mode (GCM).
Related papers
- Revocable Encryption, Programs, and More: The Case of Multi-Copy Security [48.53070281993869]
We show the feasibility of revocable primitives, such as revocable encryption and revocable programs.
This suggests that the stronger notion of multi-copy security is within reach in unclonable cryptography.
arXiv Detail & Related papers (2024-10-17T02:37:40Z) - Multi-Layered Security System: Integrating Quantum Key Distribution with Classical Cryptography to Enhance Steganographic Security [0.0]
We present a novel cryptographic system that integrates Quantum Key Distribution (QKD) with classical encryption techniques.
Our approach leverages the E91 QKD protocol to generate a shared secret key between communicating parties.
This key is then hashed using the Secure Hash Algorithm (SHA) to provide a fixedlength, high-entropy key.
arXiv Detail & Related papers (2024-08-13T15:20:29Z) - Deep Learning and Chaos: A combined Approach To Image Encryption and Decryption [1.8749305679160366]
We introduce a novel image encryption and decryption algorithm using hyperchaotic signals from the novel 3D hyperchaotic map, 2D memristor map, Convolutional Neural Network (CNN)
The robustness of the encryption algorithm is shown by key sensitivity analysis, i.e., the average sensitivity of the algorithm to key elements.
arXiv Detail & Related papers (2024-06-24T16:56:22Z) - Coding-Based Hybrid Post-Quantum Cryptosystem for Non-Uniform Information [53.85237314348328]
We introduce for non-uniform messages a novel hybrid universal network coding cryptosystem (NU-HUNCC)
We show that NU-HUNCC is information-theoretic individually secured against an eavesdropper with access to any subset of the links.
arXiv Detail & Related papers (2024-02-13T12:12:39Z) - Lightweight Public Key Encryption in Post-Quantum Computing Era [0.0]
Confidentiality in our digital world is based on the security of cryptographic algorithms.
In the course of technological progress with quantum computers, the protective function of common encryption algorithms is threatened.
Our concept describes the transformation of a classical asymmetric encryption method to a modern complexity class.
arXiv Detail & Related papers (2023-11-24T21:06:42Z) - SOCI^+: An Enhanced Toolkit for Secure OutsourcedComputation on Integers [50.608828039206365]
We propose SOCI+ which significantly improves the performance of SOCI.
SOCI+ employs a novel (2, 2)-threshold Paillier cryptosystem with fast encryption and decryption as its cryptographic primitive.
Compared with SOCI, our experimental evaluation shows that SOCI+ is up to 5.4 times more efficient in computation and 40% less in communication overhead.
arXiv Detail & Related papers (2023-09-27T05:19:32Z) - A Variational Quantum Attack for AES-like Symmetric Cryptography [69.80357450216633]
We propose a variational quantum attack algorithm (VQAA) for classical AES-like symmetric cryptography.
In the VQAA, the known ciphertext is encoded as the ground state of a Hamiltonian that is constructed through a regular graph.
arXiv Detail & Related papers (2022-05-07T03:15:15Z) - Recovering AES Keys with a Deep Cold Boot Attack [91.22679787578438]
Cold boot attacks inspect the corrupted random access memory soon after the power has been shut down.
In this work, we combine a novel cryptographic variant of a deep error correcting code technique with a modified SAT solver scheme to apply the attack on AES keys.
Our results show that our methods outperform the state of the art attack methods by a very large margin.
arXiv Detail & Related papers (2021-06-09T07:57:01Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Attack of the Genes: Finding Keys and Parameters of Locked Analog ICs
Using Genetic Algorithm [3.0396374367054784]
We use algorithms based on evolutionary strategies to investigate the security of analog obfuscation/locking techniques.
We present a genetic algorithm (GA) approach which is capable of completely breaking a locked analog circuit.
We implement both a more naive satisfiability modulo theory (SMT)-based attack on common analog benchmark circuits obfuscated by combinational locking and parameter biasing.
arXiv Detail & Related papers (2020-03-31T01:38:00Z) - TEDL: A Text Encryption Method Based on Deep Learning [10.428079716944463]
This paper proposes a novel text encryption method based on deep learning called TEDL.
Results of experiments and relevant analyses show that TEDL performs well for security, efficiency, generality, and has a lower demand for the frequency of key redistribution.
arXiv Detail & Related papers (2020-03-09T11:04:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.