論文の概要: Simplicits: Mesh-Free, Geometry-Agnostic, Elastic Simulation
- arxiv url: http://arxiv.org/abs/2407.09497v1
- Date: Sun, 9 Jun 2024 18:57:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 13:38:25.569566
- Title: Simplicits: Mesh-Free, Geometry-Agnostic, Elastic Simulation
- Title(参考訳): 単純さ:メッシュフリー、幾何学非依存、弾性シミュレーション
- Authors: Vismay Modi, Nicholas Sharp, Or Perel, Shinjiro Sueda, David I. W. Levin,
- Abstract要約: 幾何表現の任意の対象に対して弾性シミュレーションを行うための,データ,メッシュ,グリッドフリーのソリューションを提案する。
各オブジェクトに対して、変形ベースとして作用する様々な重みを符号化する小さな暗黙のニューラルネットワークを適合させる。
実験では, 距離関数, 点雲, ニューラルプリミティブ, トモグラフィースキャン, 放射場, ガウススプラット, 表面メッシュ, 体積メッシュなどのデータに対して, このアプローチの汎用性, 精度, 速度を実証した。
- 参考スコア(独自算出の注目度): 18.45850302604534
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The proliferation of 3D representations, from explicit meshes to implicit neural fields and more, motivates the need for simulators agnostic to representation. We present a data-, mesh-, and grid-free solution for elastic simulation for any object in any geometric representation undergoing large, nonlinear deformations. We note that every standard geometric representation can be reduced to an occupancy function queried at any point in space, and we define a simulator atop this common interface. For each object, we fit a small implicit neural network encoding spatially varying weights that act as a reduced deformation basis. These weights are trained to learn physically significant motions in the object via random perturbations. Our loss ensures we find a weight-space basis that best minimizes deformation energy by stochastically evaluating elastic energies through Monte Carlo sampling of the deformation volume. At runtime, we simulate in the reduced basis and sample the deformations back to the original domain. Our experiments demonstrate the versatility, accuracy, and speed of this approach on data including signed distance functions, point clouds, neural primitives, tomography scans, radiance fields, Gaussian splats, surface meshes, and volume meshes, as well as showing a variety of material energies, contact models, and time integration schemes.
- Abstract(参考訳): 明示的なメッシュから暗黙のニューラルネットワークに至るまでの3D表現の拡散は、表現に非依存なシミュレータの必要性を動機付けている。
大規模で非線形な変形を受ける任意の幾何学的表現における任意の物体に対する弾性シミュレーションのための,データ,メッシュ,グリッドフリーな解を提案する。
すべての標準幾何表現は、空間上の任意の点で待ち行列に縮めることができ、この共通インタフェース上のシミュレータを定義することに注意する。
各物体に対して、空間的に変化する重みを符号化する小さな暗黙のニューラルネットワークを適合させ、変形の低減基盤として機能させる。
これらの重みは、ランダムな摂動によって物体の物理的に重要な動きを学ぶために訓練される。
我々の損失は、変形体積のモンテカルロサンプリングを通して弾性エネルギーを統計的に評価することにより、変形エネルギーを最も最小化する重量空間基底を見つけることを保証する。
実行時に、還元された基底をシミュレートし、変形を元の領域に戻す。
実験では, 距離関数, 点雲, ニューラルプリミティブ, トモグラフィスキャン, 放射場, ガウススプラット, 表面メッシュ, 体積メッシュなど, 様々な物質エネルギー, 接触モデル, 時間積分スキームを含むデータに対して, このアプローチの汎用性, 精度, 速度を実証した。
関連論文リスト
- Automated 3D Physical Simulation of Open-world Scene with Gaussian Splatting [22.40115216094332]
Sim Anythingは、静的な3Dオブジェクトにインタラクティブなダイナミクスを与える物理ベースのアプローチである。
人間の視覚的推論に触発されて,MLLMに基づく物理特性知覚を提案する。
また、物理幾何学的適応サンプリングを用いて粒子をサンプリングして、オープンワールドシーンでオブジェクトをシミュレートする。
論文 参考訳(メタデータ) (2024-11-19T12:52:21Z) - Neurally Integrated Finite Elements for Differentiable Elasticity on Evolving Domains [19.755626638375904]
進化的暗黙の関数として定義された領域の弾性シミュレータ。これは効率的で堅牢で、形状や材料に関して微分可能である。
重要な技術的革新は、暗黙の格子セル上で堅牢な数値積分のために、二次点に適合するように小さなニューラルネットワークを訓練することである。
提案手法は, 暗黙の前方シミュレーション, 編集中の3次元形状の直接シミュレーション, 物理に基づく新しい形状とトポロジーの最適化と, 微分可能レンダリングの併用における有効性を示す。
論文 参考訳(メタデータ) (2024-10-12T07:49:23Z) - GIC: Gaussian-Informed Continuum for Physical Property Identification and Simulation [60.33467489955188]
本稿では,視覚的観察を通して物理特性(システム同定)を推定する問題について検討する。
物理特性推定における幾何学的ガイダンスを容易にするために,我々は新しいハイブリッドフレームワークを提案する。
本研究では,3次元ガウス点集合としてオブジェクトを復元する動き分解に基づく動的3次元ガウスフレームワークを提案する。
抽出された物体表面に加えて、ガウスインフォームド連続体はシミュレーション中の物体マスクのレンダリングを可能にする。
論文 参考訳(メタデータ) (2024-06-21T07:37:17Z) - Similarity Equivariant Graph Neural Networks for Homogenization of Metamaterials [3.6443770850509423]
ソフトで多孔質なメカニカルメタマテリアルは、ソフトロボティクス、音の低減、バイオメディシンに重要な応用をもたらすパターン変換を示す。
我々は、代理モデルとして機能するために好意的にスケールする機械学習ベースのアプローチを開発する。
このネットワークは、対称性の少ないグラフニューラルネットワークよりも正確で、データ効率が高いことを示す。
論文 参考訳(メタデータ) (2024-04-26T12:30:32Z) - Neural Stress Fields for Reduced-order Elastoplasticity and Fracture [43.538728312264524]
弾塑性と破壊の低次モデリングのためのハイブリッドニューラルネットワークと物理フレームワークを提案する。
鍵となる革新は、暗黙の神経表現を通してキルヒホフ応力場に対する低次元多様体を訓練することである。
最大10万倍の次元削減と最大10倍の時間節約を実証した。
論文 参考訳(メタデータ) (2023-10-26T21:37:32Z) - NeuralClothSim: Neural Deformation Fields Meet the Thin Shell Theory [70.10550467873499]
薄型シェルを用いた新しい擬似布シミュレータであるNeuralClothSimを提案する。
メモリ効率の高い解法はニューラル変形場と呼ばれる新しい連続座標に基づく表面表現を演算する。
論文 参考訳(メタデータ) (2023-08-24T17:59:54Z) - Physics-informed UNets for Discovering Hidden Elasticity in
Heterogeneous Materials [0.0]
弾性インバージョンのための新しいUNetベースニューラルネットワークモデル(El-UNet)を開発した。
完全接続された物理インフォームドニューラルネットワークと比較して,El-UNetによる精度と計算コストの両面で優れた性能を示す。
論文 参考訳(メタデータ) (2023-06-01T23:35:03Z) - Learning Physical Dynamics with Subequivariant Graph Neural Networks [99.41677381754678]
グラフニューラルネットワーク(GNN)は、物理力学を学習するための一般的なツールとなっている。
物理法則は、モデル一般化に必須な帰納バイアスである対称性に従属する。
本モデルは,RigidFall上でのPhysylonと2倍低ロールアウトMSEの8つのシナリオにおいて,平均3%以上の接触予測精度の向上を実現している。
論文 参考訳(メタデータ) (2022-10-13T10:00:30Z) - Predicting Loose-Fitting Garment Deformations Using Bone-Driven Motion
Networks [63.596602299263935]
本稿では,骨駆動型モーションネットワークを用いて,ゆるやかな衣服メッシュの変形を対話的に予測する学習アルゴリズムを提案する。
提案手法は,メッシュ変形の予測精度を約20%,ハウスドルフ距離とSTEDで約10%向上させる。
論文 参考訳(メタデータ) (2022-05-03T07:54:39Z) - {\phi}-SfT: Shape-from-Template with a Physics-Based Deformation Model [69.27632025495512]
Shape-from-Template (SfT) 法では、単一の単眼RGBカメラから3次元表面の変形を推定する。
本稿では,物理シミュレーションによる2次元観察を解説する新しいSfT手法を提案する。
論文 参考訳(メタデータ) (2022-03-22T17:59:57Z) - Learning to Simulate Complex Physics with Graph Networks [68.43901833812448]
本稿では,機械学習のフレームワークとモデルの実装について紹介する。
グラフネットワーク・ベース・シミュレータ(GNS)と呼ばれる我々のフレームワークは、グラフ内のノードとして表現された粒子で物理系の状態を表現し、学習されたメッセージパスによって動的を計算します。
我々のモデルは,訓練中に数千の粒子による1段階の予測から,異なる初期条件,数千の時間ステップ,少なくとも1桁以上の粒子をテスト時に一般化できることを示す。
論文 参考訳(メタデータ) (2020-02-21T16:44:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。