論文の概要: 1-Lipschitz Neural Distance Fields
- arxiv url: http://arxiv.org/abs/2407.09505v1
- Date: Fri, 14 Jun 2024 11:56:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 13:28:38.531969
- Title: 1-Lipschitz Neural Distance Fields
- Title(参考訳): 1-Lipschitzニューラル距離場
- Authors: Guillaume Coiffier, Louis Bethune,
- Abstract要約: 対象物の符号付き距離関数を近似する新しい手法を提案する。
我々は,平面あるいは空間内の任意の閉曲面あるいは開曲面の距離関数を近似することができることを示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural implicit surfaces are a promising tool for geometry processing that represent a solid object as the zero level set of a neural network. Usually trained to approximate a signed distance function of the considered object, these methods exhibit great visual fidelity and quality near the surface, yet their properties tend to degrade with distance, making geometrical queries hard to perform without the help of complex range analysis techniques. Based on recent advancements in Lipschitz neural networks, we introduce a new method for approximating the signed distance function of a given object. As our neural function is made 1- Lipschitz by construction, it cannot overestimate the distance, which guarantees robustness even far from the surface. Moreover, the 1-Lipschitz constraint allows us to use a different loss function, called the hinge-Kantorovitch-Rubinstein loss, which pushes the gradient as close to unit-norm as possible, thus reducing computation costs in iterative queries. As this loss function only needs a rough estimate of occupancy to be optimized, this means that the true distance function need not to be known. We are therefore able to compute neural implicit representations of even bad quality geometry such as noisy point clouds or triangle soups. We demonstrate that our methods is able to approximate the distance function of any closed or open surfaces or curves in the plane or in space, while still allowing sphere tracing or closest point projections to be performed robustly.
- Abstract(参考訳): ニューラルネットワークのゼロレベルセットとして固形物体を表す幾何学処理のための有望なツールである。
これらの手法は、通常、観測対象の符号付き距離関数を近似するために訓練され、表面近傍の視覚的忠実度と品質を示すが、それらの性質は距離で劣化する傾向にあり、複雑な範囲解析技術の助けなしに幾何的クエリの実行が困難になる。
リプシッツニューラルネットワークの最近の進歩に基づき、与えられた物体の符号付き距離関数を近似する新しい手法を提案する。
我々の神経機能は構築によって1-リプシッツとなるので、その距離を過大評価することはできない。
さらに、1-Lipschitz制約は、ヒンジ・カントロヴィッチ・ルビンシュタイン損失と呼ばれる別の損失関数を使用することで、勾配をできるだけ単位ノルムに近づけることで、反復的なクエリの計算コストを削減できる。
この損失関数は、最適化するために占有率を大まかに見積もるだけでよいので、真の距離関数は知る必要がなくなる。
したがって、ノイズのある点雲や三角形のスープのような、品質の悪い幾何学の神経暗黙表現を計算できる。
本手法は, 平面内あるいは空間内における任意の閉曲面あるいは開曲線の距離関数を近似できる一方で, 球追跡や最近点投影を頑健に行うことができることを示す。
関連論文リスト
- A Mean-Field Analysis of Neural Stochastic Gradient Descent-Ascent for Functional Minimax Optimization [90.87444114491116]
本稿では,超パラメトリック化された2層ニューラルネットワークの無限次元関数クラス上で定義される最小最適化問題について検討する。
i) 勾配降下指数アルゴリズムの収束と, (ii) ニューラルネットワークの表現学習に対処する。
その結果、ニューラルネットワークによって誘導される特徴表現は、ワッサーシュタイン距離で測定された$O(alpha-1)$で初期表現から逸脱することが許された。
論文 参考訳(メタデータ) (2024-04-18T16:46:08Z) - Approximation Theory, Computing, and Deep Learning on the Wasserstein Space [0.5735035463793009]
有限標本からの無限次元空間における近似関数の挑戦に対処する。
我々の焦点はワッサーシュタイン距離関数であり、これは関連する例である。
機能近似を定義するために,機械学習に基づく3つのアプローチを採用する。
論文 参考訳(メタデータ) (2023-10-30T13:59:47Z) - GridPull: Towards Scalability in Learning Implicit Representations from
3D Point Clouds [60.27217859189727]
大規模クラウドから暗黙の表現を学習する効率を改善するため,GridPullを提案する。
我々の斬新さは、ニューラルネットワークを使わずにグリッド上に定義された離散距離場の高速な推論にある。
我々は、一様格子を用いて高速グリッド探索を行い、サンプルクエリをローカライズし、木構造内の表面点を整理し、表面への距離の計算を高速化する。
論文 参考訳(メタデータ) (2023-08-25T04:52:52Z) - Provable Data Subset Selection For Efficient Neural Network Training [73.34254513162898]
本稿では,任意の放射基底関数ネットワーク上での入力データの損失を近似する,emphRBFNNのコアセットを構成するアルゴリズムについて紹介する。
次に、一般的なネットワークアーキテクチャやデータセット上で、関数近似とデータセットサブセットの選択に関する経験的評価を行う。
論文 参考訳(メタデータ) (2023-03-09T10:08:34Z) - GeoUDF: Surface Reconstruction from 3D Point Clouds via Geometry-guided
Distance Representation [73.77505964222632]
スパース点雲から離散曲面を再構成する問題に対処する学習ベース手法であるGeoUDFを提案する。
具体的には、UDFのための幾何誘導学習法とその勾配推定を提案する。
予測されたUDFから三角形メッシュを抽出するために,カスタマイズされたエッジベースマーチングキューブモジュールを提案する。
論文 参考訳(メタデータ) (2022-11-30T06:02:01Z) - Spelunking the Deep: Guaranteed Queries for General Neural Implicit
Surfaces [35.438964954948574]
この研究は、広範囲の既存アーキテクチャに対して、一般的なニューラル暗黙関数でクエリを直接実行するための新しいアプローチを示す。
私たちのキーとなるツールは、ニューラルネットワークへのレンジ分析の適用であり、ネットワークの出力を領域を越えてバウンドするために自動演算ルールを使用します。
得られた境界を用いて、レイキャスト、交差試験、空間階層の構築、高速メッシュ抽出、最近点評価などのクエリを開発する。
論文 参考訳(メタデータ) (2022-02-05T00:37:08Z) - Differential Geometry in Neural Implicits [0.6198237241838558]
トライアングルメッシュの離散微分幾何とニューラル暗黙曲面の連続微分幾何を橋渡しするニューラル暗黙の枠組みを導入する。
ニューラルネットワークの微分可能特性と三角形メッシュの離散幾何学を利用して、ニューラルネットワークをニューラルネットワークの暗黙関数のゼロレベル集合として近似する。
論文 参考訳(メタデータ) (2022-01-23T13:40:45Z) - Neural-Pull: Learning Signed Distance Functions from Point Clouds by
Learning to Pull Space onto Surfaces [68.12457459590921]
3次元点雲から連続曲面を再構成することは、3次元幾何処理の基本的な操作である。
textitNeural-Pullは、シンプルで高品質なSDFを実現する新しいアプローチです。
論文 参考訳(メタデータ) (2020-11-26T23:18:10Z) - Neural Unsigned Distance Fields for Implicit Function Learning [53.241423815726925]
任意の3次元形状の符号なし距離場を予測するニューラルネットワークベースモデルであるニューラル距離場(NDF)を提案する。
NDFは、高解像度の表面を事前の暗黙のモデルとして表現するが、クローズドな表面データを必要としない。
NDFは、グラフィックスのレンダリングにのみ使用される技術を用いて、マルチターゲットレグレッション(1入力に複数の出力)に使用できる。
論文 参考訳(メタデータ) (2020-10-26T22:49:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。