論文の概要: Part2Object: Hierarchical Unsupervised 3D Instance Segmentation
- arxiv url: http://arxiv.org/abs/2407.10084v1
- Date: Sun, 14 Jul 2024 05:18:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 19:38:33.733952
- Title: Part2Object: Hierarchical Unsupervised 3D Instance Segmentation
- Title(参考訳): Part2Object:階層的な教師なし3Dインスタンスセグメンテーション
- Authors: Cheng Shi, Yulin Zhang, Bin Yang, Jiajin Tang, Yuexin Ma, Sibei Yang,
- Abstract要約: 教師なしの3Dインスタンスセグメンテーションは、アノテーションなしで3Dポイントクラウドからオブジェクトをセグメントすることを目的としている。
Part2Objectは、ポイントからオブジェクトの部分やオブジェクトへの多層クラスタリングを採用しており、任意のレイヤでオブジェクトが表現できる。
階層型3Dオブジェクト部分とインスタンスセグメンテーションをサポートするHi-Mask3Dを提案する。
- 参考スコア(独自算出の注目度): 31.44173252707684
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unsupervised 3D instance segmentation aims to segment objects from a 3D point cloud without any annotations. Existing methods face the challenge of either too loose or too tight clustering, leading to under-segmentation or over-segmentation. To address this issue, we propose Part2Object, hierarchical clustering with object guidance. Part2Object employs multi-layer clustering from points to object parts and objects, allowing objects to manifest at any layer. Additionally, it extracts and utilizes 3D objectness priors from temporally consecutive 2D RGB frames to guide the clustering process. Moreover, we propose Hi-Mask3D to support hierarchical 3D object part and instance segmentation. By training Hi-Mask3D on the objects and object parts extracted from Part2Object, we achieve consistent and superior performance compared to state-of-the-art models in various settings, including unsupervised instance segmentation, data-efficient fine-tuning, and cross-dataset generalization. Code is release at https://github.com/ChengShiest/Part2Object
- Abstract(参考訳): 教師なしの3Dインスタンスセグメンテーションは、アノテーションなしで3Dポイントクラウドからオブジェクトをセグメントすることを目的としている。
既存のメソッドは、ゆるいか、きついクラスタリングの難しさに直面するため、セグメンテーション不足や過剰なセグメンテーションにつながる。
この問題に対処するために、オブジェクトガイダンス付き階層的クラスタリングであるPart2Objectを提案する。
Part2Objectは、ポイントからオブジェクトの部分やオブジェクトへの多層クラスタリングを採用しており、任意のレイヤでオブジェクトが表現できる。
さらに、時間的に連続した2D RGBフレームから3Dオブジェクトを抽出し、利用することにより、クラスタリングプロセスのガイドを行う。
さらに,階層型3Dオブジェクト部分とインスタンスセグメンテーションをサポートするHi-Mask3Dを提案する。
Part2Objectから抽出したオブジェクトやオブジェクトのHi-Mask3Dをトレーニングすることにより、教師なしインスタンスセグメンテーション、データ効率の良い微調整、データセット間の一般化など、さまざまな設定における最先端モデルと比較して、一貫性と優れたパフォーマンスを実現する。
code is release at https://github.com/ChengShiest/Part2Object
関連論文リスト
- 3D-GRES: Generalized 3D Referring Expression Segmentation [77.10044505645064]
3D参照式(3D-RES)は、自然言語の記述に基づいて、特定のインスタンスを3D空間内にセグメント化することを目的としている。
一般化された3D参照式(3D-GRES)は、自然言語命令に基づいて任意の数のインスタンスをセグメントする機能を拡張する。
論文 参考訳(メタデータ) (2024-07-30T08:59:05Z) - 3x2: 3D Object Part Segmentation by 2D Semantic Correspondences [33.99493183183571]
本稿では,いくつかのアノテーション付き3D形状やリッチアノテーション付き2Dデータセットを活用して3Dオブジェクト部分のセグメンテーションを実現することを提案する。
我々は,様々な粒度レベルのベンチマークでSOTA性能を実現する3-By-2という新しい手法を提案する。
論文 参考訳(メタデータ) (2024-07-12T19:08:00Z) - 1st Place Solution for MOSE Track in CVPR 2024 PVUW Workshop: Complex Video Object Segmentation [72.54357831350762]
本稿では,ビデオオブジェクトのセグメンテーションモデルを提案する。
我々は大規模ビデオオブジェクトセグメンテーションデータセットを用いてモデルを訓練した。
我々のモデルは、複雑なビデオオブジェクトチャレンジのテストセットで1位(textbf84.45%)を達成した。
論文 参考訳(メタデータ) (2024-06-07T03:13:46Z) - PARIS3D: Reasoning-based 3D Part Segmentation Using Large Multimodal Model [19.333506797686695]
本稿では,3次元オブジェクトに対する推論部分分割と呼ばれる新しいセグメンテーションタスクを提案する。
我々は3Dオブジェクトの特定の部分に関する複雑で暗黙的なテキストクエリに基づいてセグメンテーションマスクを出力する。
本稿では,暗黙のテキストクエリに基づいて3次元オブジェクトの一部を分割し,自然言語による説明を生成するモデルを提案する。
論文 参考訳(メタデータ) (2024-04-04T23:38:45Z) - SAI3D: Segment Any Instance in 3D Scenes [68.57002591841034]
新規なゼロショット3Dインスタンスセグメンテーション手法であるSAI3Dを紹介する。
我々の手法は3Dシーンを幾何学的プリミティブに分割し、段階的に3Dインスタンスセグメンテーションにマージする。
ScanNet、Matterport3D、さらに難しいScanNet++データセットに関する実証的な評価は、我々のアプローチの優位性を示している。
論文 参考訳(メタデータ) (2023-12-17T09:05:47Z) - SAM-guided Graph Cut for 3D Instance Segmentation [60.75119991853605]
本稿では,3次元画像情報と多視点画像情報の同時利用による3次元インスタンス分割の課題に対処する。
本稿では,3次元インスタンスセグメンテーションのための2次元セグメンテーションモデルを効果的に活用する新しい3D-to-2Dクエリフレームワークを提案する。
本手法は,ロバストなセグメンテーション性能を実現し,異なるタイプのシーンにまたがる一般化を実現する。
論文 参考訳(メタデータ) (2023-12-13T18:59:58Z) - A One Stop 3D Target Reconstruction and multilevel Segmentation Method [0.0]
オープンソースのワンストップ3Dターゲット再構成とマルチレベルセグメンテーションフレームワーク(OSTRA)を提案する。
OSTRAは2D画像上でセグメンテーションを行い、画像シーケンス内のセグメンテーションラベルで複数のインスタンスを追跡し、ラベル付き3Dオブジェクトまたは複数のパーツをMulti-View Stereo(MVS)またはRGBDベースの3D再構成手法で再構成する。
本手法は,複雑なシーンにおいて,リッチなマルチスケールセグメンテーション情報に埋め込まれた3次元ターゲットを再構築するための新たな道を開く。
論文 参考訳(メタデータ) (2023-08-14T07:12:31Z) - ONeRF: Unsupervised 3D Object Segmentation from Multiple Views [59.445957699136564]
OneRFは、追加のマニュアルアノテーションなしで、マルチビューのRGBイメージから3Dのオブジェクトインスタンスを自動的に分割し、再構成する手法である。
セグメント化された3Dオブジェクトは、様々な3Dシーンの編集と新しいビューレンダリングを可能にする別個のNeRF(Neural Radiance Fields)を使用して表現される。
論文 参考訳(メタデータ) (2022-11-22T06:19:37Z) - OGC: Unsupervised 3D Object Segmentation from Rigid Dynamics of Point
Clouds [4.709764624933227]
OGCと呼ばれる最初の教師なしの手法を提案し、同時に複数の3Dオブジェクトを1つの前方通過で識別する。
提案手法を5つのデータセット上で広範囲に評価し,オブジェクト部分のインスタンスセグメンテーションにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2022-10-10T07:01:08Z) - Instance Segmentation in 3D Scenes using Semantic Superpoint Tree
Networks [64.27814530457042]
本稿では,シーンポイントからオブジェクトインスタンスを提案するセマンティックスーパーポイントツリーネットワーク(SSTNet)のエンドツーエンドソリューションを提案する。
SSTNetのキーは中間的セマンティックなスーパーポイントツリー(SST)であり、スーパーポイントの学習されたセマンティックな特徴に基づいて構築されている。
SSTNetはScanNet(V2)のリーダーボードで上位にランクされ、第2のベストメソッドよりもmAPが2%高い。
論文 参考訳(メタデータ) (2021-08-17T07:25:14Z) - SDOD:Real-time Segmenting and Detecting 3D Object by Depth [5.97602869680438]
本稿では,3次元物体を奥行きで分割・検出するリアルタイムフレームワークを提案する。
オブジェクトの深さを深度カテゴリに分類し、インスタンス分割タスクをピクセルレベルの分類タスクに変換する。
挑戦的なKITTIデータセットの実験から、我々のアプローチはLklNetを約1.8倍の性能で、セグメンテーションと3D検出の速度を上回ります。
論文 参考訳(メタデータ) (2020-01-26T09:06:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。