論文の概要: Deflated Dynamics Value Iteration
- arxiv url: http://arxiv.org/abs/2407.10454v1
- Date: Mon, 15 Jul 2024 06:07:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 16:11:00.023561
- Title: Deflated Dynamics Value Iteration
- Title(参考訳): Deflated Dynamics Value Iteration
- Authors: Jongmin Lee, Amin Rakhsha, Ernest K. Ryu, Amir-massoud Farahmand,
- Abstract要約: 値関数の計算を高速化するために, DDVI (Deflated Dynamics Value Iteration) を提案する。
DDVI は行列分割法と行列デフレレーション法を用いて、遷移行列 $mathcalPpi$ の上位$s$支配固有構造を効果的に除去する。
このことが$tildeO(gammak |lambda_s+1$is $(s+1)$-the largest eigen value of the dynamics matrix につながることを証明している。
- 参考スコア(独自算出の注目度): 17.718445089667945
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Value Iteration (VI) algorithm is an iterative procedure to compute the value function of a Markov decision process, and is the basis of many reinforcement learning (RL) algorithms as well. As the error convergence rate of VI as a function of iteration $k$ is $O(\gamma^k)$, it is slow when the discount factor $\gamma$ is close to $1$. To accelerate the computation of the value function, we propose Deflated Dynamics Value Iteration (DDVI). DDVI uses matrix splitting and matrix deflation techniques to effectively remove (deflate) the top $s$ dominant eigen-structure of the transition matrix $\mathcal{P}^{\pi}$. We prove that this leads to a $\tilde{O}(\gamma^k |\lambda_{s+1}|^k)$ convergence rate, where $\lambda_{s+1}$is $(s+1)$-th largest eigenvalue of the dynamics matrix. We then extend DDVI to the RL setting and present Deflated Dynamics Temporal Difference (DDTD) algorithm. We empirically show the effectiveness of the proposed algorithms.
- Abstract(参考訳): 値反復 (VI) アルゴリズムはマルコフ決定過程の値関数を反復的に計算する手法であり、多くの強化学習 (RL) アルゴリズムの基礎でもある。
反復$k$ の関数としての VI の誤差収束率は$O(\gamma^k)$ であるため、割引係数 $\gamma$ が 1 ドルに近づくと遅くなる。
値関数の計算を高速化するために, DDVI (Deflated Dynamics Value Iteration) を提案する。
DDVI は行列分割法と行列デフレレーション法を用いて遷移行列 $\mathcal{P}^{\pi}$ のトップ$s$支配固有構造を効果的に除去(定義)する。
これは$\tilde{O}(\gamma^k |\lambda_{s+1}|^k)$収束率となり、$\lambda_{s+1}$is $(s+1)$-the largest eigenvalue of the dynamics matrix。
次に、DDVIをRL設定に拡張し、DDTDアルゴリズムを示す。
提案アルゴリズムの有効性を実証的に示す。
関連論文リスト
- Provably Efficient Infinite-Horizon Average-Reward Reinforcement Learning with Linear Function Approximation [1.8416014644193066]
ベルマン最適条件下で線形マルコフ決定過程(MDP)と線形混合MDPを学習するアルゴリズムを提案する。
線形MDPに対する我々のアルゴリズムは、$widetildemathcalO(d3/2mathrmsp(v*)sqrtT)$ over $T$タイムステップの最もよく知られた後悔の上限を達成する。
線形混合 MDP に対して、我々のアルゴリズムは、$widetildemathcalO(dcdotmathrm) の後悔境界に達する。
論文 参考訳(メタデータ) (2024-09-16T23:13:42Z) - Inverting the Leverage Score Gradient: An Efficient Approximate Newton Method [10.742859956268655]
本稿では,レバレッジスコア勾配から固有モデルパラメータを復元することを目的とする。
具体的には、レバレッジスコア勾配の逆転を$g(x)$として精査する。
論文 参考訳(メタデータ) (2024-08-21T01:39:42Z) - Optimal Sketching for Residual Error Estimation for Matrix and Vector Norms [50.15964512954274]
線形スケッチを用いた行列とベクトルノルムの残差誤差推定問題について検討する。
これは、前作とほぼ同じスケッチサイズと精度で、経験的にかなり有利であることを示す。
また、スパースリカバリ問題に対して$Omega(k2/pn1-2/p)$低いバウンダリを示し、これは$mathrmpoly(log n)$ factorまで厳密である。
論文 参考訳(メタデータ) (2024-08-16T02:33:07Z) - Conv-Basis: A New Paradigm for Efficient Attention Inference and Gradient Computation in Transformers [16.046186753149]
最近のLarge Language Models(LLM)におけるトランスフォーマーの成功の鍵は自己認識メカニズムである
我々は、注目行列の畳み込み様構造を利用して、畳み込み行列を用いた注目の効率的な近似法を開発する。
トランスフォーマーモデルにおけるアテンション計算を加速するための新しいパラダイムが、より長いコンテキストへのアプリケーションを支援することを願っています。
論文 参考訳(メタデータ) (2024-05-08T17:11:38Z) - Solving Dense Linear Systems Faster Than via Preconditioning [1.8854491183340518]
我々のアルゴリズムは$tilde O(n2)$ if $k=O(n0.729)$であることを示す。
特に、我々のアルゴリズムは$tilde O(n2)$ if $k=O(n0.729)$である。
主アルゴリズムはランダム化ブロック座標降下法とみなすことができる。
論文 参考訳(メタデータ) (2023-12-14T12:53:34Z) - Fast $(1+\varepsilon)$-Approximation Algorithms for Binary Matrix
Factorization [54.29685789885059]
本稿では, 2次行列分解(BMF)問題に対する効率的な$(1+varepsilon)$-approximationアルゴリズムを提案する。
目標は、低ランク因子の積として$mathbfA$を近似することである。
我々の手法はBMF問題の他の一般的な変種に一般化する。
論文 参考訳(メタデータ) (2023-06-02T18:55:27Z) - Refined Regret for Adversarial MDPs with Linear Function Approximation [50.00022394876222]
我々は,損失関数が約1,300ドル以上のエピソードに対して任意に変化するような,敵対的決定過程(MDP)の学習を検討する。
本稿では,同じ設定で$tildemathcal O(K2/3)$に対する後悔を改善する2つのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-01-30T14:37:21Z) - Continuous Submodular Maximization: Boosting via Non-oblivious Function [12.755674710719616]
本稿では、オフラインおよびオンライン設定の両方において制約付きおよび連続的なサブモジュールイテレーションを再考する。
係数回帰最適化方程式を用いて、問題$max_boldsymbolxinmathCf(boldsymbolx)$に対して最適な補助関数$F$を導出する。
オンライン環境では、勾配フィードバックアルゴリズムの強化を提案し、$sqrtD$($D$は勾配フィードバックが$(fracgamma2)$に対する遅延の総和である)を後悔する。
論文 参考訳(メタデータ) (2022-01-03T15:10:17Z) - Randomized Exploration for Reinforcement Learning with General Value
Function Approximation [122.70803181751135]
本稿では,ランダム化最小二乗値反復(RLSVI)アルゴリズムに着想を得たモデルレス強化学習アルゴリズムを提案する。
提案アルゴリズムは,スカラーノイズを用いたトレーニングデータを簡易に摂動させることにより,探索を促進する。
我々はこの理論を、既知の困難な探査課題にまたがる実証的な評価で補完する。
論文 参考訳(メタデータ) (2021-06-15T02:23:07Z) - Private Stochastic Convex Optimization: Optimal Rates in $\ell_1$
Geometry [69.24618367447101]
対数要因まで $(varepsilon,delta)$-differently private の最適過剰人口損失は $sqrtlog(d)/n + sqrtd/varepsilon n.$ です。
損失関数がさらなる滑らかさの仮定を満たすとき、余剰損失は$sqrtlog(d)/n + (log(d)/varepsilon n)2/3で上界(対数因子まで)であることが示される。
論文 参考訳(メタデータ) (2021-03-02T06:53:44Z) - Streaming Complexity of SVMs [110.63976030971106]
本稿では,ストリーミングモデルにおけるバイアス正規化SVM問題を解く際の空間複雑性について検討する。
両方の問題に対して、$frac1lambdaepsilon$の次元に対して、$frac1lambdaepsilon$よりも空間的に小さいストリーミングアルゴリズムを得ることができることを示す。
論文 参考訳(メタデータ) (2020-07-07T17:10:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。