論文の概要: A unified theory and statistical learning approach for traffic conflict detection
- arxiv url: http://arxiv.org/abs/2407.10959v1
- Date: Mon, 15 Jul 2024 17:55:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 13:51:02.239195
- Title: A unified theory and statistical learning approach for traffic conflict detection
- Title(参考訳): 交通衝突検出のための統一理論と統計的学習手法
- Authors: Yiru Jiao, Simeon C. Calvert, Sander van Cranenburgh, Hans van Lint,
- Abstract要約: 本研究では,交通競合検出のための統一理論と統計的学習手法を提案する。
コンフリクト検出は、観測された確率と文脈変数から統計的学習によってリスクを推定するものである。
3つの主要なタスクは、選択された可観測物からの相互作用コンテキストの表現、異なるコンテキストにおける近接分布の推測、極端な値理論の適用である。
- 参考スコア(独自算出の注目度): 3.1457219084519004
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This study proposes a unified theory and statistical learning approach for traffic conflict detection, addressing the long-existing call for a consistent and comprehensive methodology to evaluate the collision risk emerged in road user interactions. The proposed theory assumes a context-dependent probabilistic collision risk and frames conflict detection as estimating the risk by statistical learning from observed proximities and contextual variables. Three primary tasks are integrated: representing interaction context from selected observables, inferring proximity distributions in different contexts, and applying extreme value theory to relate conflict intensity with conflict probability. As a result, this methodology is adaptable to various road users and interaction scenarios, enhancing its applicability without the need for pre-labelled conflict data. Demonstration experiments are executed using real-world trajectory data, with the unified metric trained on lane-changing interactions on German highways and applied to near-crash events from the 100-Car Naturalistic Driving Study in the U.S. The experiments demonstrate the methodology's ability to provide effective collision warnings, generalise across different datasets and traffic environments, cover a broad range of conflicts, and deliver a long-tailed distribution of conflict intensity. This study contributes to traffic safety by offering a consistent and explainable methodology for conflict detection applicable across various scenarios. Its societal implications include enhanced safety evaluations of traffic infrastructures, more effective collision warning systems for autonomous and driving assistance systems, and a deeper understanding of road user behaviour in different traffic conditions, contributing to a potential reduction in accident rates and improving overall traffic safety.
- Abstract(参考訳): 本研究は,道路利用者の衝突リスクを評価するための一貫した包括的方法論を求めて,交通衝突検出のための統一理論と統計的学習手法を提案する。
提案理論は、文脈依存確率的衝突リスクを仮定し、観測された確率と文脈変数からの統計的学習によるリスクの推定として競合検出をフレーム化する。
3つの主要なタスクは、選択された可観測物からの相互作用コンテキストを表現し、異なる文脈における近接分布を推定し、競合強度と競合確率を関連付けるために極端な値理論を適用することである。
その結果、この手法は様々な道路利用者や相互作用シナリオに適用可能であり、事前の競合データを必要としない適用性を高めることができる。
実証実験は実世界の軌道データを用いて実施され、ドイツの高速道路での車線変更の相互作用を訓練し、米国の100-Car Naturalistic Driving Studyのほぼクラッシュなイベントに適用した。
この実験は、効果的な衝突警告を提供する方法論の能力を実証し、異なるデータセットと交通環境をまたいで一般化し、幅広い紛争をカバーし、紛争強度の長期分布を提供する。
本研究は,様々なシナリオに適用可能な競合検出のための一貫した,説明可能な方法論を提供することにより,交通安全に寄与する。
その社会的意味には、交通インフラの安全性評価の強化、自律運転支援システムのより効果的な衝突警告システム、交通状況の異なる道路利用者の行動のより深い理解、事故率の潜在的な低下、交通全体の安全性の向上などが含まれる。
関連論文リスト
- MSCT: Addressing Time-Varying Confounding with Marginal Structural Causal Transformer for Counterfactual Post-Crash Traffic Prediction [24.3907895281179]
本稿では,ポストクラッシュ交通予測のための新しい深層学習モデルを提案する。
提案モデルでは, 仮説的衝突介入戦略の下での交通速度の理解と予測に特化して, 処理を意識したモデルを提案する。
このモデルは、合成データと実世界のデータの両方を用いて検証され、MSCTがマルチステップ・アヘッド予測性能において最先端モデルより優れていることを示す。
論文 参考訳(メタデータ) (2024-07-19T06:42:41Z) - XTraffic: A Dataset Where Traffic Meets Incidents with Explainability and More [38.092415845567345]
トラヒックとインシデントという2つの非常に相関の深いトラックで研究が行われている。
XTrafficデータセットには、トラフィック、すなわち、トラフィックフロー、車線占有率、平均車両速度の時系列インデックスが含まれている。
各ノードは、レーンの詳細な物理ポリシーレベルのメタ属性を含む。
論文 参考訳(メタデータ) (2024-07-16T08:16:01Z) - Learning Traffic Crashes as Language: Datasets, Benchmarks, and What-if Causal Analyses [76.59021017301127]
我々は,CrashEventという大規模トラフィッククラッシュ言語データセットを提案し,実世界のクラッシュレポート19,340を要約した。
さらに,クラッシュイベントの特徴学習を,新たなテキスト推論問題として定式化し,さらに様々な大規模言語モデル(LLM)を微調整して,詳細な事故結果を予測する。
実験の結果, LLMに基づくアプローチは事故の重大度を予測できるだけでなく, 事故の種類を分類し, 損害を予測できることがわかった。
論文 参考訳(メタデータ) (2024-06-16T03:10:16Z) - SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Controllable Adversaries [94.84458417662407]
本稿では,新しい拡散制御型クローズドループ安全クリティカルシミュレーションフレームワークであるSAFE-SIMを紹介する。
我々は,認知過程における敵対的項を通して,安全クリティカルなシナリオをシミュレートする新しい手法を開発した。
我々はNuScenesデータセットを実証的に検証し、リアリズムと制御性の両方の改善を実証した。
論文 参考訳(メタデータ) (2023-12-31T04:14:43Z) - AccidentGPT: Accident Analysis and Prevention from V2X Environmental
Perception with Multi-modal Large Model [32.14950866838055]
AccidentGPTは総合的な事故解析とマルチモーダル大模型の予防である。
自律走行車では、車両を制御し衝突を避けるための総合的な環境認識と理解を提供する。
人間の運転する車には、プロアクティブな長距離安全警告と盲点警告を提供します。
我々のフレームワークは、歩行者、車両、道路、環境を含む交通安全のインテリジェントでリアルタイムな分析を支援する。
論文 参考訳(メタデータ) (2023-12-20T16:19:47Z) - Uncertainty Quantification for Image-based Traffic Prediction across
Cities [63.136794104678025]
不確実量化(UQ)法は確率論的推論を誘導するためのアプローチを提供する。
複数の都市にまたがる大規模画像ベース交通データセットへの適用について検討する。
モスクワ市を事例として,交通行動に対する時間的・空間的影響を考察した。
論文 参考訳(メタデータ) (2023-08-11T13:35:52Z) - A Counterfactual Safety Margin Perspective on the Scoring of Autonomous
Vehicles' Riskiness [52.27309191283943]
本稿では,異なるAVの行動のリスクを評価するためのデータ駆動型フレームワークを提案する。
本稿では,衝突を引き起こす可能性のある名目行動から最小限の偏差を示す,対実的安全マージンの概念を提案する。
論文 参考訳(メタデータ) (2023-08-02T09:48:08Z) - Analyzing vehicle pedestrian interactions combining data cube structure
and predictive collision risk estimation model [5.73658856166614]
本研究では,フィールドと集中型プロセスを組み合わせた歩行者安全システムについて紹介する。
本システムは,現場における今後のリスクを直ちに警告し,実際の衝突のない道路の安全レベルを評価することにより,危険頻繁なエリアの安全性を向上させることができる。
論文 参考訳(メタデータ) (2021-07-26T23:00:56Z) - Learning Interaction-aware Guidance Policies for Motion Planning in
Dense Traffic Scenarios [8.484564880157148]
本稿では,高密度交通シナリオにおける対話型モーションプランニングのための新しい枠組みを提案する。
我々は,他車両の協調性に関する国際的ガイダンスを提供するインタラクション対応政策であるDeep Reinforcement Learning (RL) を通じて学習することを提案する。
学習されたポリシーは、ローカル最適化ベースのプランナーを推論し、対話的な振る舞いで誘導し、他の車両が収まらない場合に安全を維持しながら、密集したトラフィックに積極的にマージする。
論文 参考訳(メタデータ) (2021-07-09T16:43:12Z) - Congestion-aware Multi-agent Trajectory Prediction for Collision
Avoidance [110.63037190641414]
渋滞パターンを明示的に学習し、新しい「センス--学習--Reason--予測」フレームワークを考案する。
学習段階を2段階に分解することで、「学生」は「教師」から文脈的手がかりを学習し、衝突のない軌跡を生成する。
実験では,提案モデルが合成データセットにおいて衝突のない軌道予測を生成できることを実証する。
論文 参考訳(メタデータ) (2021-03-26T02:42:33Z) - Risk-Sensitive Sequential Action Control with Multi-Modal Human
Trajectory Forecasting for Safe Crowd-Robot Interaction [55.569050872780224]
本稿では,リスクに敏感な最適制御に基づく安全な群集ロボットインタラクションのためのオンラインフレームワークを提案し,そのリスクをエントロピーリスク尺度でモデル化する。
私たちのモジュラーアプローチは、クラウドとロボットの相互作用を学習ベースの予測とモデルベースの制御に分離します。
シミュレーション研究と実世界の実験により、このフレームワークは、現場にいる50人以上の人間との衝突を避けながら、安全で効率的なナビゲーションを実現することができることが示された。
論文 参考訳(メタデータ) (2020-09-12T02:02:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。