論文の概要: A unified theory and statistical learning approach for traffic conflict detection
- arxiv url: http://arxiv.org/abs/2407.10959v2
- Date: Thu, 25 Jul 2024 15:21:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-26 18:27:52.993322
- Title: A unified theory and statistical learning approach for traffic conflict detection
- Title(参考訳): 交通衝突検出のための統一理論と統計的学習手法
- Authors: Yiru Jiao, Simeon C. Calvert, Sander van Cranenburgh, Hans van Lint,
- Abstract要約: 本研究では,交通競合検出のための統一理論と統計的学習手法を提案する。
提案理論は、文脈依存的な確率的衝突リスクを仮定し、日々の相互作用における極端な事象の統計的学習により、このリスクを評価する。
- 参考スコア(独自算出の注目度): 3.1457219084519004
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This study proposes a unified theory and statistical learning approach for traffic conflict detection, addressing the long-existing call for a consistent and comprehensive methodology to evaluate the collision risk emerging in road user interactions. The proposed theory assumes context-dependent probabilistic collision risk and frames conflict detection as assessing this risk by statistical learning of extreme events in daily interactions. Experiments using real-world trajectory data are conducted in this study, where a unified metric of conflict is trained with lane-changing interactions on German highways and applied to near-crash events from the 100-Car Naturalistic Driving Study in the U.S. Results of the experiments demonstrate that the trained metric provides effective collision warnings, generalises across distinct datasets and traffic environments, covers a broad range of conflicts, and delivers a long-tailed distribution of conflict intensity. Reflecting on these results, the unified theory ensures consistent evaluation by a generic formulation that encompasses varying assumptions of traffic conflicts; the statistical learning approach then enables a comprehensive consideration of influencing factors such as motion states of road users, environment conditions, and participant characteristics. Therefore, the theory and learning approach jointly provide an explainable and adaptable methodology for conflict detection among different road users and across various interaction scenarios. This promises to reduce accidents and improve overall traffic safety, by enhanced safety assessment of traffic infrastructures, more effective collision warning systems for autonomous driving, and a deeper understanding of road user behaviour in different traffic conditions.
- Abstract(参考訳): 本研究は,道路利用者の衝突リスクを評価するための一貫した包括的方法論を求めて,交通衝突検出のための統一的理論と統計的学習手法を提案する。
提案理論は、文脈依存的な確率的衝突リスクを仮定し、日々の相互作用における極端な事象の統計的学習により、このリスクを評価する。
実世界の軌道データを用いた実験は、ドイツ高速道路における車線変更の相互作用で衝突の統一計量を訓練し、米国における100-Car Naturalistic Driving Studyのほぼクラッシュな出来事に適用する。実験の結果、この測定基準が効果的な衝突警告を提供し、異なるデータセットや交通環境をまたいだ一般化を提供し、幅広い紛争をカバーし、紛争強度の長期分布を提供することを示した。
これらの結果を反映して,道路利用者の移動状態や環境条件,参加者特性といった要因を総合的に考慮し,交通紛争の仮定を包含した総合的な定式化による一貫した評価が可能である。
したがって、理論と学習のアプローチは、異なる道路利用者間および様々な相互作用シナリオ間での衝突検出のための説明可能な、適応可能な方法論を共同で提供する。
これにより、交通インフラの安全性評価の強化、自動運転のためのより効果的な衝突警告システム、異なる交通状況における道路利用者の行動のより深い理解などにより、事故の低減と交通安全全体の改善が期待できる。
関連論文リスト
- Traffic and Safety Rule Compliance of Humans in Diverse Driving Situations [48.924085579865334]
安全な運転プラクティスを再現する自律システムを開発するためには、人間のデータを分析することが不可欠だ。
本稿では,複数の軌道予測データセットにおける交通・安全規則の適合性の比較評価を行う。
論文 参考訳(メタデータ) (2024-11-04T09:21:00Z) - SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
制御可能なクローズドループ安全クリティカルシミュレーションフレームワークであるSAFE-SIMを紹介する。
提案手法は,1)現実の環境を深く反映した現実的な長距離安全クリティカルシナリオの生成,2)より包括的でインタラクティブな評価のための制御可能な敵行動の提供,の2つの利点をもたらす。
複数のプランナにまたがるnuScenesとnuPlanデータセットを使用して、我々のフレームワークを実証的に検証し、リアリズムと制御性の両方の改善を実証した。
論文 参考訳(メタデータ) (2023-12-31T04:14:43Z) - Interpretable Traffic Event Analysis with Bayesian Networks [24.029078330299722]
本稿では,ベイジアンネットワークに基づく交通事故予測のための解釈可能なフレームワークを提案する。
我々は、重要なトラフィックデータ情報を保持しながら、トラフィックデータをフレームワークに供給するデータセット構築パイプラインを設計する。
具体的なケーススタディにより、我々のフレームワークは、アメリカ各地の気象と交通事象の因果関係に基づくデータセットからベイズネットワークを導出することができる。
論文 参考訳(メタデータ) (2023-10-10T15:38:30Z) - STRIDE: Street View-based Environmental Feature Detection and Pedestrian
Collision Prediction [1.002773173311891]
本研究では,大規模なパノラマ画像に構築された環境検知タスクと,歩行者衝突頻度予測タスクを導入する。
本実験は,建築環境要素の物体検出と歩行者衝突頻度予測との間に有意な相関関係を示す。
論文 参考訳(メタデータ) (2023-08-25T05:25:01Z) - Cooperative Saliency-based Obstacle Detection and AR Rendering for
Increased Situational Awareness [3.010893618491329]
本稿では,サリエンシに基づく分散的協調的障害物検出・レンダリング手法を提案する。
提案手法は,近年の他の手法と比較して,良好な結果と特徴を提供する。
論文 参考訳(メタデータ) (2023-02-02T07:32:13Z) - A Utility Maximization Model of Pedestrian and Driver Interactions [5.02231401459109]
本研究では,道路利用者間の対話行動の詳細を考慮し,実用性,運動プリミティブ,断続的行動決定の原則を適用したモデリングフレームワークを開発する。
これらの現象は、モデルがパラメータを進化させることによって、モデリングフレームワークから自然に現れることを示す。
論文 参考訳(メタデータ) (2021-10-21T09:42:02Z) - Analyzing vehicle pedestrian interactions combining data cube structure
and predictive collision risk estimation model [5.73658856166614]
本研究では,フィールドと集中型プロセスを組み合わせた歩行者安全システムについて紹介する。
本システムは,現場における今後のリスクを直ちに警告し,実際の衝突のない道路の安全レベルを評価することにより,危険頻繁なエリアの安全性を向上させることができる。
論文 参考訳(メタデータ) (2021-07-26T23:00:56Z) - Congestion-aware Multi-agent Trajectory Prediction for Collision
Avoidance [110.63037190641414]
渋滞パターンを明示的に学習し、新しい「センス--学習--Reason--予測」フレームワークを考案する。
学習段階を2段階に分解することで、「学生」は「教師」から文脈的手がかりを学習し、衝突のない軌跡を生成する。
実験では,提案モデルが合成データセットにおいて衝突のない軌道予測を生成できることを実証する。
論文 参考訳(メタデータ) (2021-03-26T02:42:33Z) - Studying Person-Specific Pointing and Gaze Behavior for Multimodal
Referencing of Outside Objects from a Moving Vehicle [58.720142291102135]
物体選択と参照のための自動車応用において、手指しと目視が広く研究されている。
既存の車外参照手法は静的な状況に重点を置いているが、移動車両の状況は極めて動的であり、安全性に制約がある。
本研究では,外部オブジェクトを参照するタスクにおいて,各モダリティの具体的特徴とそれら間の相互作用について検討する。
論文 参考訳(メタデータ) (2020-09-23T14:56:19Z) - Risk-Sensitive Sequential Action Control with Multi-Modal Human
Trajectory Forecasting for Safe Crowd-Robot Interaction [55.569050872780224]
本稿では,リスクに敏感な最適制御に基づく安全な群集ロボットインタラクションのためのオンラインフレームワークを提案し,そのリスクをエントロピーリスク尺度でモデル化する。
私たちのモジュラーアプローチは、クラウドとロボットの相互作用を学習ベースの予測とモデルベースの制御に分離します。
シミュレーション研究と実世界の実験により、このフレームワークは、現場にいる50人以上の人間との衝突を避けながら、安全で効率的なナビゲーションを実現することができることが示された。
論文 参考訳(メタデータ) (2020-09-12T02:02:52Z) - Implicit Latent Variable Model for Scene-Consistent Motion Forecasting [78.74510891099395]
本稿では,センサデータから直接複雑な都市交通のシーン一貫性のある動き予測を学習することを目的とする。
我々は、シーンを相互作用グラフとしてモデル化し、強力なグラフニューラルネットワークを用いてシーンの分散潜在表現を学習する。
論文 参考訳(メタデータ) (2020-07-23T14:31:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。