論文の概要: Gaussian Splatting Lucas-Kanade
- arxiv url: http://arxiv.org/abs/2407.11309v2
- Date: Thu, 27 Mar 2025 15:13:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-28 12:48:44.343503
- Title: Gaussian Splatting Lucas-Kanade
- Title(参考訳): Gaussian Splatting Lucas-Kanade
- Authors: Liuyue Xie, Joel Julin, Koichiro Niinuma, Laszlo A. Jeni,
- Abstract要約: 本稿では,古典ルーカスカナーデ法を動的ガウススプラッティングに適応させる新しい解析手法を提案する。
前方ワープフィールドネットワークの固有特性を活用することにより,時間積分により正確なシーンフロー計算を容易にする解析速度場を導出する。
提案手法は,合成シーンと実世界のシーンの両方で実証されたような,最小限のカメラモーションで高ダイナミックなシーンを再構築する上で優れている。
- 参考スコア(独自算出の注目度): 0.11249583407496218
- License:
- Abstract: Gaussian Splatting and its dynamic extensions are effective for reconstructing 3D scenes from 2D images when there is significant camera movement to facilitate motion parallax and when scene objects remain relatively static. However, in many real-world scenarios, these conditions are not met. As a consequence, data-driven semantic and geometric priors have been favored as regularizers, despite their bias toward training data and their neglect of broader movement dynamics. Departing from this practice, we propose a novel analytical approach that adapts the classical Lucas-Kanade method to dynamic Gaussian splatting. By leveraging the intrinsic properties of the forward warp field network, we derive an analytical velocity field that, through time integration, facilitates accurate scene flow computation. This enables the precise enforcement of motion constraints on warp fields, thus constraining both 2D motion and 3D positions of the Gaussians. Our method excels in reconstructing highly dynamic scenes with minimal camera movement, as demonstrated through experiments on both synthetic and real-world scenes.
- Abstract(参考訳): ガウススメッティングとそのダイナミック拡張は、モーションパララックスを促進するためにカメラの動きが著しい場合や、シーンオブジェクトが比較的静止している場合の2次元画像から3次元シーンを再構成するのに有効である。
しかし、多くの現実のシナリオでは、これらの条件は満たされない。
その結果、トレーニングデータに対する偏見とより広範な運動力学の無視にもかかわらず、データ駆動のセマンティックおよび幾何学的先行は正規化要因として好まれている。
この実践とは別に、古典的なルーカス・カナーデ法を動的ガウススプラッティングに適応させる新しい分析手法を提案する。
前方ワープフィールドネットワークの固有特性を活用することにより,時間積分により正確なシーンフロー計算を容易にする解析速度場を導出する。
これにより、ワープフィールド上の運動制限の厳密な適用が可能となり、ガウスの2次元運動と3次元位置の両方が制約される。
提案手法は,合成シーンと実世界のシーンの両方で実証されたような,最小限のカメラモーションで高ダイナミックなシーンを再構築する上で優れている。
関連論文リスト
- Urban4D: Semantic-Guided 4D Gaussian Splatting for Urban Scene Reconstruction [86.4386398262018]
Urban4Dは、深い2Dセマンティックマップ生成の進歩に触発されたセマンティック誘導分解戦略である。
我々のアプローチは、信頼できるセマンティック・ガウシアンを通して潜在的に動的対象を区別する。
実世界のデータセットでの実験では、Urban4Dは従来の最先端の手法と同等または優れた品質を実現している。
論文 参考訳(メタデータ) (2024-12-04T16:59:49Z) - GAST: Sequential Gaussian Avatars with Hierarchical Spatio-temporal Context [7.6736633105043515]
3D人間のアバターは、標準放射場とフレームごとの歪みを観察することで、高忠実なレンダリングとアニメーションを可能にします。
空間SMPL(-X)のポーズや時間埋め込みに依存する既存の手法は、それぞれ粗い品質や限られたアニメーションの柔軟性に悩まされている。
空間情報と時間情報の両方を階層的に統合することで、3DGSと3DGSを統合化するためのフレームワークであるGASTを提案する。
論文 参考訳(メタデータ) (2024-11-25T04:05:19Z) - DeSiRe-GS: 4D Street Gaussians for Static-Dynamic Decomposition and Surface Reconstruction for Urban Driving Scenes [71.61083731844282]
本稿では,自己教師型ガウススプラッティング表現であるDeSiRe-GSについて述べる。
複雑な駆動シナリオにおいて、効率的な静的・動的分解と高忠実な表面再構成を可能にする。
論文 参考訳(メタデータ) (2024-11-18T05:49:16Z) - Motion-aware 3D Gaussian Splatting for Efficient Dynamic Scene Reconstruction [89.53963284958037]
動的シーン再構築のための新しい動き認識拡張フレームワークを提案する。
具体的には,まず3次元ガウス運動と画素レベルの流れの対応性を確立する。
より厳密な最適化問題を示す先行的な変形に基づくパラダイムに対して,過渡対応変形補助モジュールを提案する。
論文 参考訳(メタデータ) (2024-03-18T03:46:26Z) - SC-GS: Sparse-Controlled Gaussian Splatting for Editable Dynamic Scenes [59.23385953161328]
動的シーンのための新しいビュー合成は、コンピュータビジョンとグラフィックスにおいて依然として難しい問題である。
本稿では,動的シーンの動作と外観を疎制御点と高密度ガウスに明示的に分解する新しい表現を提案する。
提案手法は,高忠実度な外観を維持しつつ,ユーザ制御のモーション編集を可能にする。
論文 参考訳(メタデータ) (2023-12-04T11:57:14Z) - Periodic Vibration Gaussian: Dynamic Urban Scene Reconstruction and Real-time Rendering [36.111845416439095]
周期振動ガウスモデル(PVG)を提案する。
PVGは、当初静的シーン表現のために設計された効率的な3Dガウススプラッティング技術に基づいている。
PVGは、最良の代替品よりも900倍の速度でレンダリングできる。
論文 参考訳(メタデータ) (2023-11-30T13:53:50Z) - EmerNeRF: Emergent Spatial-Temporal Scene Decomposition via
Self-Supervision [85.17951804790515]
EmerNeRFは動的駆動シーンの時空間表現を学習するためのシンプルだが強力なアプローチである。
シーンの幾何学、外観、動き、セマンティクスを自己ブートストラップで同時にキャプチャする。
本手法はセンサシミュレーションにおける最先端性能を実現する。
論文 参考訳(メタデータ) (2023-11-03T17:59:55Z) - Deformable 3D Gaussians for High-Fidelity Monocular Dynamic Scene
Reconstruction [29.83056271799794]
暗黙の神経表現は、動的なシーンの再構築とレンダリングに対する新しいアプローチの道を開いた。
本稿では,3次元ガウシアンを用いてシーンを再構成し,標準空間で学習する,変形可能な3次元ガウシアンスプラッティング法を提案する。
微分ガウシアン化器により、変形可能な3Dガウシアンは高いレンダリング品質だけでなく、リアルタイムレンダリング速度も達成できる。
論文 参考訳(メタデータ) (2023-09-22T16:04:02Z) - Dynamic 3D Gaussians: Tracking by Persistent Dynamic View Synthesis [58.5779956899918]
動的シーンビュー合成と6自由度(6-DOF)追跡のタスクを同時に処理する手法を提案する。
我々は、シーンを3Dガウスアンのコレクションとしてモデル化する最近の研究に触発された、分析バイシンセサイザーの枠組みに従う。
我々は,1人称視点合成,動的合成シーン合成,4次元映像編集など,我々の表現によって実現された多数のダウンストリームアプリケーションを紹介した。
論文 参考訳(メタデータ) (2023-08-18T17:59:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。