論文の概要: I$^2$-SLAM: Inverting Imaging Process for Robust Photorealistic Dense SLAM
- arxiv url: http://arxiv.org/abs/2407.11347v1
- Date: Tue, 16 Jul 2024 03:31:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-17 18:42:16.744953
- Title: I$^2$-SLAM: Inverting Imaging Process for Robust Photorealistic Dense SLAM
- Title(参考訳): I$^2$-SLAM:ロバストフォトリアリスティック高密度SLAMの反転イメージングプロセス
- Authors: Gwangtak Bae, Changwoon Choi, Hyeongjun Heo, Sang Min Kim, Young Min Kim,
- Abstract要約: カジュアルビデオは、しばしば動きのぼやけや様々な外観に悩まされ、コヒーレントな3D視覚表現の最終的な品質を低下させる。
本稿では、線形HDR放射率マップを用いて測定値の収集を行うSLAMシステムに物理画像を統合することを提案する。
- 参考スコア(独自算出の注目度): 10.464532720114052
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present an inverse image-formation module that can enhance the robustness of existing visual SLAM pipelines for casually captured scenarios. Casual video captures often suffer from motion blur and varying appearances, which degrade the final quality of coherent 3D visual representation. We propose integrating the physical imaging into the SLAM system, which employs linear HDR radiance maps to collect measurements. Specifically, individual frames aggregate images of multiple poses along the camera trajectory to explain prevalent motion blur in hand-held videos. Additionally, we accommodate per-frame appearance variation by dedicating explicit variables for image formation steps, namely white balance, exposure time, and camera response function. Through joint optimization of additional variables, the SLAM pipeline produces high-quality images with more accurate trajectories. Extensive experiments demonstrate that our approach can be incorporated into recent visual SLAM pipelines using various scene representations, such as neural radiance fields or Gaussian splatting.
- Abstract(参考訳): カジュアルにキャプチャされたシナリオに対して、既存の視覚SLAMパイプラインの堅牢性を高めることができる逆画像形成モジュールを提案する。
カジュアルビデオは、しばしば動きのぼやけや様々な外観に悩まされ、コヒーレントな3D視覚表現の最終的な品質を低下させる。
本稿では、線形HDR放射率マップを用いて測定値の収集を行うSLAMシステムに物理画像を統合することを提案する。
具体的には、それぞれのフレームがカメラ軌道に沿って複数のポーズの画像を集約し、手持ちの動画で一般的な動きのぼやけを説明する。
さらに、画像形成ステップ、すなわちホワイトバランス、露出時間、カメラ応答関数に明示的な変数を割り当てることで、フレーム単位の外観変化に対応する。
追加変数の合同最適化により、SLAMパイプラインはより正確な軌跡を持つ高品質な画像を生成する。
広汎な実験により,ニューラルラディアンスフィールドやガウススプラッティングなどの様々なシーン表現を用いて,近年の視覚SLAMパイプラインに本手法を組み込むことが実証された。
関連論文リスト
- MBA-SLAM: Motion Blur Aware Dense Visual SLAM with Radiance Fields Representation [15.752529196306648]
本研究では、重度動きブルレッド入力を処理するための高密度視覚SLAMパイプライン(MBA-SLAM)を提案する。
提案手法では,効率的な運動ぼかし対応トラッカーをニューラルネットワークとガウススプラッティングベースのマッパーに統合する。
MBA-SLAMは、カメラのローカライゼーションとマップ再構成の両方において、従来の最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-11-13T01:38:06Z) - GS-Blur: A 3D Scene-Based Dataset for Realistic Image Deblurring [50.72230109855628]
本稿では,新しい手法を用いて合成されたリアルなぼやけた画像のデータセットであるGS-Blurを提案する。
まず,3Dガウス・スプレイティング(3DGS)を用いて多視点画像から3Dシーンを再構成し,ランダムに生成された運動軌跡に沿ってカメラビューを移動させてぼやけた画像を描画する。
GS-Blurの再構築に様々なカメラトラジェクトリを採用することで、我々のデータセットは現実的で多様な種類のぼかしを含み、現実世界のぼかしをうまく一般化する大規模なデータセットを提供する。
論文 参考訳(メタデータ) (2024-10-31T06:17:16Z) - WE-GS: An In-the-wild Efficient 3D Gaussian Representation for Unconstrained Photo Collections [8.261637198675151]
制約のない写真コレクションからの新規ビュー合成(NVS)は、コンピュータグラフィックスでは困難である。
写真コレクションからのシーン再構築のための効率的なポイントベース微分可能レンダリングフレームワークを提案する。
提案手法は、新しいビューのレンダリング品質と、高収束・レンダリング速度の外観合成において、既存のアプローチよりも優れている。
論文 参考訳(メタデータ) (2024-06-04T15:17:37Z) - MM3DGS SLAM: Multi-modal 3D Gaussian Splatting for SLAM Using Vision, Depth, and Inertial Measurements [59.70107451308687]
カメラ画像と慣性測定による地図表現に3Dガウスアンを用いることで、精度の高いSLAMが実現できることを示す。
我々の手法であるMM3DGSは、より高速なスケール認識と軌道追跡の改善により、事前レンダリングの限界に対処する。
また,カメラと慣性測定ユニットを備えた移動ロボットから収集したマルチモーダルデータセットUT-MMもリリースした。
論文 参考訳(メタデータ) (2024-04-01T04:57:41Z) - Gaussian Splatting on the Move: Blur and Rolling Shutter Compensation for Natural Camera Motion [25.54868552979793]
本稿では,カメラの動きに適応し,手持ち映像データを用いた高品質なシーン再構成を実現する手法を提案する。
合成データと実データの両方を用いて、既存の手法よりもカメラの動きを軽減できる性能を示した。
論文 参考訳(メタデータ) (2024-03-20T06:19:41Z) - Generative Image Dynamics [80.70729090482575]
本研究では,シーン動作に先立って画像空間をモデル化する手法を提案する。
我々の先行研究は、実映像から抽出した動き軌跡の収集から得られたものである。
論文 参考訳(メタデータ) (2023-09-14T17:54:01Z) - Spatiotemporally Consistent HDR Indoor Lighting Estimation [66.26786775252592]
本研究では,屋内照明推定問題を解決するための物理動機付きディープラーニングフレームワークを提案する。
深度マップを用いた1枚のLDR画像から,任意の画像位置における空間的に一貫した照明を予測できる。
我々のフレームワークは、最先端の単一画像やビデオベースの手法と比較して、高画質で光リアリスティック照明予測を実現する。
論文 参考訳(メタデータ) (2023-05-07T20:36:29Z) - ESLAM: Efficient Dense SLAM System Based on Hybrid Representation of
Signed Distance Fields [2.0625936401496237]
ESLAMは、未知のカメラポーズでRGB-Dフレームを読み出し、シーン表現を漸進的に再構築する。
ESLAMは3次元再構成の精度を向上し、最先端の高密度視覚SLAM法のカメラローカライゼーションを50%以上向上する。
論文 参考訳(メタデータ) (2022-11-21T18:25:14Z) - Extracting Triangular 3D Models, Materials, and Lighting From Images [59.33666140713829]
多視点画像観測による材料と照明の協調最適化手法を提案する。
従来のグラフィックスエンジンにデプロイ可能な,空間的に変化する材料と環境を備えたメッシュを活用します。
論文 参考訳(メタデータ) (2021-11-24T13:58:20Z) - Visual Odometry with an Event Camera Using Continuous Ray Warping and
Volumetric Contrast Maximization [31.627936023222052]
イベントカメラによるトラッキングとマッピングのための新しいソリューションを提案する。
カメラの動きは回転と変換の両方を含み、変位は任意に構造化された環境で起こる。
コントラストを3Dで実現することで,この問題に対する新たな解決法を提案する。
車両搭載イベントカメラによるAGV運動推定と3次元再構成への応用により,本手法の実用的妥当性が裏付けられる。
論文 参考訳(メタデータ) (2021-07-07T04:32:57Z) - DeepMultiCap: Performance Capture of Multiple Characters Using Sparse
Multiview Cameras [63.186486240525554]
deep multicapは、スパースマルチビューカメラを用いたマルチパーソンパフォーマンスキャプチャのための新しい手法である。
本手法では,事前走査型テンプレートモデルを用いることなく,時間変化した表面の詳細をキャプチャできる。
論文 参考訳(メタデータ) (2021-05-01T14:32:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。