論文の概要: Federated Learning Forecasting for Strengthening Grid Reliability and Enabling Markets for Resilience
- arxiv url: http://arxiv.org/abs/2407.11571v1
- Date: Tue, 16 Jul 2024 10:23:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-17 15:32:52.003648
- Title: Federated Learning Forecasting for Strengthening Grid Reliability and Enabling Markets for Resilience
- Title(参考訳): グリッド信頼性向上のためのフェデレーション学習予測とレジリエンス市場
- Authors: Lucas Pereira, Vineet Jagadeesan Nair, Bruno Dias, Hugo Morais, Anuradha Annaswamy,
- Abstract要約: 分散エネルギー資源に富む将来の電力グリッドの信頼性とレジリエンスを高めるための包括的アプローチを提案する。
分散方式では,フェデレーション学習に基づく攻撃検出と,地域電気市場による攻撃軽減手法を組み合わせた。
- 参考スコア(独自算出の注目度): 1.7150009812004434
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a comprehensive approach to increase the reliability and resilience of future power grids rich in distributed energy resources. Our distributed scheme combines federated learning-based attack detection with a local electricity market-based attack mitigation method. We validate the scheme by applying it to a real-world distribution grid rich in solar PV. Simulation results demonstrate that the approach is feasible and can successfully mitigate the grid impacts of cyber-physical attacks.
- Abstract(参考訳): 分散エネルギー資源に富む将来の電力グリッドの信頼性とレジリエンスを高めるための包括的アプローチを提案する。
分散方式では,フェデレーション学習に基づく攻撃検出と,地域電気市場による攻撃軽減手法を組み合わせた。
太陽PVに富んだ実世界の配電網に適用し,その有効性を検証した。
シミュレーションの結果、このアプローチは実現可能であり、サイバー物理攻撃によるグリッドの影響を軽減できることが示されている。
関連論文リスト
- Discovery of False Data Injection Schemes on Frequency Controllers with Reinforcement Learning [7.540446548202259]
インバータベースの分散エネルギー資源(DER)は、再生可能エネルギーを電力システムに統合する上で重要な役割を果たす。
我々は、潜在的な脅威やシステムの脆弱性を特定するために強化学習を採用することを提案する。
論文 参考訳(メタデータ) (2024-08-30T01:09:32Z) - GAN-GRID: A Novel Generative Attack on Smart Grid Stability Prediction [53.2306792009435]
我々は,現実の制約に合わせたスマートグリッドの安定性予測システムを対象とした,新たな敵攻撃GAN-GRIDを提案する。
以上の結果から,データやモデル知識を欠いた,安定度モデルのみに武装した敵が,攻撃成功率0.99の安定度でデータを作成できることが判明した。
論文 参考訳(メタデータ) (2024-05-20T14:43:46Z) - Generalized Policy Learning for Smart Grids: FL TRPO Approach [6.058785372434129]
フェデレートラーニング(FL)は、データのプライバシを維持しながら、異種データセット上のモデルをトレーニングすることができる。
本稿では,FLと信頼地域政策最適化(FL TRPO)を組み合わせた,エネルギー関連排出削減とコスト削減を目的とした枠組みを提案する。
論文 参考訳(メタデータ) (2024-03-27T10:47:06Z) - Enhancing Cyber-Resilience in Integrated Energy System Scheduling with Demand Response Using Deep Reinforcement Learning [11.223780653355437]
本稿では, 状態適応型深部強化学習(DRL)に基づくモデルレスレジリエンススケジューリング手法を提案する。
提案手法は、電力・ガス・熱可塑性負荷の相互作用能力を調べるためのIDRプログラムを設計する。
スケジューリング戦略に対するサイバー攻撃の影響を軽減するため,SA-SAC (State-adversarial soft actor-critic)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-11-28T23:29:36Z) - A Safe Genetic Algorithm Approach for Energy Efficient Federated
Learning in Wireless Communication Networks [53.561797148529664]
フェデレートラーニング(FL)は、従来の集中型アプローチとは対照的に、デバイスが協調的にモデルトレーニングを行う分散技術として登場した。
FLの既存の取り組みにもかかわらず、その環境影響は、無線ネットワークへの適用性に関するいくつかの重要な課題が特定されているため、まだ調査中である。
現在の研究は遺伝的アルゴリズム(GA)アプローチを提案しており、FLプロセス全体のエネルギー消費と不要な資源利用の両方を最小化することを目標としている。
論文 参考訳(メタデータ) (2023-06-25T13:10:38Z) - Distributed Energy Management and Demand Response in Smart Grids: A
Multi-Agent Deep Reinforcement Learning Framework [53.97223237572147]
本稿では、自律制御と再生可能エネルギー資源のスマート電力グリッドシステムへの統合のための多エージェント深層強化学習(DRL)フレームワークを提案する。
特に,提案フレームワークは,住宅利用者に対する需要応答 (DR) と分散エネルギー管理 (DEM) を共同で検討している。
論文 参考訳(メタデータ) (2022-11-29T01:18:58Z) - Evaluating Distribution System Reliability with Hyperstructures Graph
Convolutional Nets [74.51865676466056]
本稿では,グラフ畳み込みネットワークとハイパー構造表現学習フレームワークを,精度,信頼性,計算効率のよい分散グリッド計画に活用する方法を示す。
数値実験の結果,提案手法は計算効率を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2022-11-14T01:29:09Z) - Evaluating the Planning and Operational Resilience of Electrical
Distribution Systems with Distributed Energy Resources using Complex Network
Theory [0.0]
本稿では,極端事象下での配電系統の計画と運用のレジリエンスを評価する手法を提案する。
提案するフレームワークは,複雑なネットワーク理論を効果的に活用して開発されている。
論文 参考訳(メタデータ) (2022-08-24T13:41:37Z) - Web-Based Platform for Evaluation of Resilient and Transactive
Smart-Grids [0.0]
トランスアクティブ・エナジー(TE)は、経済・制御技術を通じて、スマートグレードにおけるDERの増加を管理するための新たなアプローチである。
我々は、様々なサイバー攻撃や物理的攻撃に対して、スマートグリッドのレジリエンスを評価するための包括的Webベースのプラットフォームを提案する。
論文 参考訳(メタデータ) (2022-06-11T15:34:33Z) - A Multi-Agent Deep Reinforcement Learning Approach for a Distributed
Energy Marketplace in Smart Grids [58.666456917115056]
本稿では,マイクログリッドを支配下に置くために,強化学習に基づくエネルギー市場を提案する。
提案する市場モデルにより,リアルタイムかつ需要に依存した動的価格設定環境が実現され,グリッドコストが低減され,消費者の経済的利益が向上する。
論文 参考訳(メタデータ) (2020-09-23T02:17:51Z) - Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A
Multi-Agent Deep Reinforcement Learning Approach [82.6692222294594]
マイクログリッドを用いたMECネットワークにおけるリスク対応エネルギースケジューリング問題について検討する。
ニューラルネットワークを用いたマルチエージェントディープ強化学習(MADRL)に基づくアドバンテージアクター・クリティック(A3C)アルゴリズムを適用し,その解を導出する。
論文 参考訳(メタデータ) (2020-02-21T02:14:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。