Review of Digital Asset Development with Graph Neural Network Unlearning
- URL: http://arxiv.org/abs/2409.18455v1
- Date: Fri, 27 Sep 2024 05:31:04 GMT
- Title: Review of Digital Asset Development with Graph Neural Network Unlearning
- Authors: Zara Lisbon,
- Abstract summary: This paper investigates the critical role of Graph Neural Networks (GNNs) in the management of digital assets.
We introduce innovative unlearning techniques specifically tailored to GNN architectures.
We highlight their applicability in various use cases, including fraud detection, risk assessment, token relationship prediction, and decentralized governance.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the rapidly evolving landscape of digital assets, the imperative for robust data privacy and compliance with regulatory frameworks has intensified. This paper investigates the critical role of Graph Neural Networks (GNNs) in the management of digital assets and introduces innovative unlearning techniques specifically tailored to GNN architectures. We categorize unlearning strategies into two primary classes: data-driven approximation, which manipulates the graph structure to isolate and remove the influence of specific nodes, and model-driven approximation, which modifies the internal parameters and architecture of the GNN itself. By examining recent advancements in these unlearning methodologies, we highlight their applicability in various use cases, including fraud detection, risk assessment, token relationship prediction, and decentralized governance. We discuss the challenges inherent in balancing model performance with the requirements for data unlearning, particularly in the context of real-time financial applications. Furthermore, we propose a hybrid approach that combines the strengths of both unlearning strategies to enhance the efficiency and effectiveness of GNNs in digital asset ecosystems. Ultimately, this paper aims to provide a comprehensive framework for understanding and implementing GNN unlearning techniques, paving the way for secure and compliant deployment of machine learning in the digital asset domain.
Related papers
- Generalized Factor Neural Network Model for High-dimensional Regression [50.554377879576066]
We tackle the challenges of modeling high-dimensional data sets with latent low-dimensional structures hidden within complex, non-linear, and noisy relationships.
Our approach enables a seamless integration of concepts from non-parametric regression, factor models, and neural networks for high-dimensional regression.
arXiv Detail & Related papers (2025-02-16T23:13:55Z) - Conservation-informed Graph Learning for Spatiotemporal Dynamics Prediction [84.26340606752763]
In this paper, we introduce the conservation-informed GNN (CiGNN), an end-to-end explainable learning framework.
The network is designed to conform to the general symmetry conservation law via symmetry where conservative and non-conservative information passes over a multiscale space by a latent temporal marching strategy.
Results demonstrate that CiGNN exhibits remarkable baseline accuracy and generalizability, and is readily applicable to learning for prediction of varioustemporal dynamics.
arXiv Detail & Related papers (2024-12-30T13:55:59Z) - Preserving Information: How does Topological Data Analysis improve Neural Network performance? [0.0]
We introduce a method for integrating Topological Data Analysis (TDA) with Convolutional Neural Networks (CNN) in the context of image recognition.
Our approach, further referred to as Vector Stitching, involves combining raw image data with additional topological information.
The results of our experiments highlight the potential of incorporating results of additional data analysis into the network's inference process.
arXiv Detail & Related papers (2024-11-27T14:56:05Z) - DFA-GNN: Forward Learning of Graph Neural Networks by Direct Feedback Alignment [57.62885438406724]
Graph neural networks are recognized for their strong performance across various applications.
BP has limitations that challenge its biological plausibility and affect the efficiency, scalability and parallelism of training neural networks for graph-based tasks.
We propose DFA-GNN, a novel forward learning framework tailored for GNNs with a case study of semi-supervised learning.
arXiv Detail & Related papers (2024-06-04T07:24:51Z) - A survey of dynamic graph neural networks [26.162035361191805]
Graph neural networks (GNNs) have emerged as a powerful tool for effectively mining and learning from graph-structured data.
This paper provides a comprehensive review of the fundamental concepts, key techniques, and state-of-the-art dynamic GNN models.
arXiv Detail & Related papers (2024-04-28T15:07:48Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
We present Mechanistic Neural Networks, a neural network design for machine learning applications in the sciences.
It incorporates a new Mechanistic Block in standard architectures to explicitly learn governing differential equations as representations.
Central to our approach is a novel Relaxed Linear Programming solver (NeuRLP) inspired by a technique that reduces solving linear ODEs to solving linear programs.
arXiv Detail & Related papers (2024-02-20T15:23:24Z) - Attentional Graph Neural Networks for Robust Massive Network
Localization [20.416879207269446]
Graph neural networks (GNNs) have emerged as a prominent tool for classification tasks in machine learning.
This paper integrates GNNs with attention mechanism to tackle a challenging nonlinear regression problem: network localization.
We first introduce a novel network localization method based on graph convolutional network (GCN), which exhibits exceptional precision even under severe non-line-of-sight (NLOS) conditions.
arXiv Detail & Related papers (2023-11-28T15:05:13Z) - Resilient Graph Neural Networks: A Coupled Dynamical Systems Approach [12.856220339384269]
Graph Neural Networks (GNNs) have established themselves as a key component in addressing diverse graph-based tasks.
Despite their notable successes, GNNs remain susceptible to input perturbations in the form of adversarial attacks.
This paper introduces an innovative approach to fortify GNNs against adversarial perturbations through the lens of coupled dynamical systems.
arXiv Detail & Related papers (2023-11-12T20:06:48Z) - INFLECT-DGNN: Influencer Prediction with Dynamic Graph Neural Networks [4.677411878315618]
We present INFLuencer prEdiCTion with Dynamic Graph Neural Networks (GNNs) and Recurrent Neural Networks (RNNs)
We introduce a novel profit-driven framework that supports decision-making based on model predictions.
Our research has significant implications for the fields of referral and targeted marketing.
arXiv Detail & Related papers (2023-07-16T19:04:48Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
This paper proposes a new learning framework named ConCerNet to improve the trustworthiness of the DNN based dynamics modeling.
We show that our method consistently outperforms the baseline neural networks in both coordinate error and conservation metrics.
arXiv Detail & Related papers (2023-02-11T21:07:30Z) - Information Obfuscation of Graph Neural Networks [96.8421624921384]
We study the problem of protecting sensitive attributes by information obfuscation when learning with graph structured data.
We propose a framework to locally filter out pre-determined sensitive attributes via adversarial training with the total variation and the Wasserstein distance.
arXiv Detail & Related papers (2020-09-28T17:55:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.