A Channel Attention-Driven Hybrid CNN Framework for Paddy Leaf Disease Detection
- URL: http://arxiv.org/abs/2407.11753v1
- Date: Tue, 16 Jul 2024 14:17:26 GMT
- Title: A Channel Attention-Driven Hybrid CNN Framework for Paddy Leaf Disease Detection
- Authors: Pandiyaraju V, Shravan Venkatraman, Abeshek A, Pavan Kumar S, Aravintakshan S A, Senthil Kumar A M, Kannan A,
- Abstract summary: Early and accurate disease identification is important in agriculture to avoid crop loss and improve cultivation.
We propose a novel hybrid deep learning (DL) classifier with a channel attention mechanism and the Swish ReLU activation function.
Our model achieved a high F1-score of 99.76% and an accuracy of 99.74%, surpassing the performance of existing models.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Farmers face various challenges when it comes to identifying diseases in rice leaves during their early stages of growth, which is a major reason for poor produce. Therefore, early and accurate disease identification is important in agriculture to avoid crop loss and improve cultivation. In this research, we propose a novel hybrid deep learning (DL) classifier designed by extending the Squeeze-and-Excitation network architecture with a channel attention mechanism and the Swish ReLU activation function. The channel attention mechanism in our proposed model identifies the most important feature channels required for classification during feature extraction and selection. The dying ReLU problem is mitigated by utilizing the Swish ReLU activation function, and the Squeeze-andExcitation blocks improve information propagation and cross-channel interaction. Upon evaluation, our model achieved a high F1-score of 99.76% and an accuracy of 99.74%, surpassing the performance of existing models. These outcomes demonstrate the potential of state-of-the-art DL techniques in agriculture, contributing to the advancement of more efficient and reliable disease detection systems.
Related papers
- Automated Disease Diagnosis in Pumpkin Plants Using Advanced CNN Models [0.0]
Pumpkin is a vital crop cultivated globally, and its productivity is crucial for food security, especially in developing regions.
Recent advancements in machine learning and deep learning offer promising solutions for automating and improving the accuracy of plant disease detection.
This paper presents a comprehensive analysis of state-of-the-art Convolutional Neural Network (CNN) models for classifying diseases in pumpkin plant leaves.
arXiv Detail & Related papers (2024-09-29T14:31:23Z) - Towards Within-Class Variation in Alzheimer's Disease Detection from Spontaneous Speech [60.08015780474457]
Alzheimer's Disease (AD) detection has emerged as a promising research area that employs machine learning classification models.
We identify within-class variation as a critical challenge in AD detection: individuals with AD exhibit a spectrum of cognitive impairments.
We propose two novel methods: Soft Target Distillation (SoTD) and Instance-level Re-balancing (InRe), targeting two problems respectively.
arXiv Detail & Related papers (2024-09-22T02:06:05Z) - Optimizing Resource Consumption in Diffusion Models through Hallucination Early Detection [87.22082662250999]
We introduce HEaD (Hallucination Early Detection), a new paradigm designed to swiftly detect incorrect generations at the beginning of the diffusion process.
We demonstrate that using HEaD saves computational resources and accelerates the generation process to get a complete image.
Our findings reveal that HEaD can save up to 12% of the generation time on a two objects scenario.
arXiv Detail & Related papers (2024-09-16T18:00:00Z) - Early Detection of Coffee Leaf Rust Through Convolutional Neural Networks Trained on Low-Resolution Images [27.195033353775006]
Coffee leaf rust, a foliar disease caused by the fungus Hemileia vastatrix, poses a major threat to coffee production.
Deep learning models for enhancing early disease detection require extensive processing power and large amounts of data.
We propose a preprocessing technique that involves convolving training images with a high-pass filter to enhance lesion-leaf contrast.
arXiv Detail & Related papers (2024-07-20T03:24:25Z) - Crop Disease Classification using Support Vector Machines with Green
Chromatic Coordinate (GCC) and Attention based feature extraction for IoT
based Smart Agricultural Applications [0.0]
Plant diseases can negatively affect leaves during agricultural cultivation, resulting in significant losses in crop output and economic value.
Various machine learning (ML) as well as deep learning (DL) algorithms have been created & studied for the identification of plant disease detection.
This article presents a novel classification method that builds on prior work by utilising attention-based feature extraction, RGB channel-based chromatic analysis, Support Vector Machines (SVM) for improved performance.
arXiv Detail & Related papers (2023-11-01T10:44:49Z) - Causal Disentanglement Hidden Markov Model for Fault Diagnosis [55.90917958154425]
We propose a Causal Disentanglement Hidden Markov model (CDHM) to learn the causality in the bearing fault mechanism.
Specifically, we make full use of the time-series data and progressively disentangle the vibration signal into fault-relevant and fault-irrelevant factors.
To expand the scope of the application, we adopt unsupervised domain adaptation to transfer the learned disentangled representations to other working environments.
arXiv Detail & Related papers (2023-08-06T05:58:45Z) - Agave crop segmentation and maturity classification with deep learning
data-centric strategies using very high-resolution satellite imagery [101.18253437732933]
We present an Agave tequilana Weber azul crop segmentation and maturity classification using very high resolution satellite imagery.
We solve real-world deep learning problems in the very specific context of agave crop segmentation.
With the resulting accurate models, agave production forecasting can be made available for large regions.
arXiv Detail & Related papers (2023-03-21T03:15:29Z) - Fuzzy Attention Neural Network to Tackle Discontinuity in Airway
Segmentation [67.19443246236048]
Airway segmentation is crucial for the examination, diagnosis, and prognosis of lung diseases.
Some small-sized airway branches (e.g., bronchus and terminaloles) significantly aggravate the difficulty of automatic segmentation.
This paper presents an efficient method for airway segmentation, comprising a novel fuzzy attention neural network and a comprehensive loss function.
arXiv Detail & Related papers (2022-09-05T16:38:13Z) - An Effective Scheme for Maize Disease Recognition based on Deep Networks [0.0]
Disease of plants impact food safety and can significantly reduce the quality and quantity of agricultural products.
There are many challenges to accurate and timely diagnosis of the disease.
This research presents a novel scheme based on a deep neural network to overcome the mentioned challenges.
arXiv Detail & Related papers (2022-05-09T12:37:11Z) - Rice Diseases Detection and Classification Using Attention Based Neural
Network and Bayesian Optimization [10.07637392589791]
Rice diseases frequently result in 20 to 40 % corp production loss in yield and is highly related to the global economy.
To achieve AI assisted rapid and accurate disease detection, we proposed the ADSNN-BO model based on MobileNet structure and augmented attention mechanism.
Our mobile compatible ADSNN-BO model achieves a test accuracy of 94.65%, which outperforms all of the state-of-the-art models tested.
arXiv Detail & Related papers (2022-01-03T22:26:00Z) - Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant
Disease Diagnosis [64.82680813427054]
Plant diseases serve as one of main threats to food security and crop production.
One popular approach is to transform this problem as a leaf image classification task, which can be addressed by the powerful convolutional neural networks (CNNs)
We propose a novel framework that incorporates rectified meta-learning module into common CNN paradigm to train a noise-robust deep network without using extra supervision information.
arXiv Detail & Related papers (2020-03-17T09:51:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.