Enhancing Leaf Disease Classification Using GAT-GCN Hybrid Model
- URL: http://arxiv.org/abs/2504.04764v1
- Date: Mon, 07 Apr 2025 06:31:38 GMT
- Title: Enhancing Leaf Disease Classification Using GAT-GCN Hybrid Model
- Authors: Shyam Sundhar, Riya Sharma, Priyansh Maheshwari, Suvidha Rupesh Kumar, T. Sunil Kumar,
- Abstract summary: This research presents a hybrid model combining Graph Attention Networks (GATs) and Graph Convolution Networks (GCNs) for leaf disease classification.<n>GCNs have been widely used for learning from graph-structured data, and GATs enhance this by incorporating attention mechanisms to focus on the most important neighbors.<n>The edge augmentation technique has introduced a significant degree of generalization in the detection capabilities of the model.
- Score: 0.23301643766310373
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Agriculture plays a critical role in the global economy, providing livelihoods and ensuring food security for billions. As innovative agricultural practices become more widespread, the risk of crop diseases has increased, highlighting the urgent need for efficient, low-intervention disease identification methods. This research presents a hybrid model combining Graph Attention Networks (GATs) and Graph Convolution Networks (GCNs) for leaf disease classification. GCNs have been widely used for learning from graph-structured data, and GATs enhance this by incorporating attention mechanisms to focus on the most important neighbors. The methodology integrates superpixel segmentation for efficient feature extraction, partitioning images into meaningful, homogeneous regions that better capture localized features. The authors have employed an edge augmentation technique to enhance the robustness of the model. The edge augmentation technique has introduced a significant degree of generalization in the detection capabilities of the model. To further optimize training, weight initialization techniques are applied. The hybrid model is evaluated against the individual performance of the GCN and GAT models and the hybrid model achieved a precision of 0.9822, recall of 0.9818, and F1-score of 0.9818 in apple leaf disease classification, a precision of 0.9746, recall of 0.9744, and F1-score of 0.9743 in potato leaf disease classification, and a precision of 0.8801, recall of 0.8801, and F1-score of 0.8799 in sugarcane leaf disease classification. These results demonstrate the robustness and performance of the model, suggesting its potential to support sustainable agricultural practices through precise and effective disease detection. This work is a small step towards reducing the loss of crops and hence supporting sustainable goals of zero hunger and life on land.
Related papers
- Fine-tuning is Not Fine: Mitigating Backdoor Attacks in GNNs with Limited Clean Data [51.745219224707384]
Graph Neural Networks (GNNs) have achieved remarkable performance through their message-passing mechanism.<n>Recent studies have highlighted the vulnerability of GNNs to backdoor attacks.<n>In this paper, we propose a practical backdoor mitigation framework, denoted as GRAPHNAD.
arXiv Detail & Related papers (2025-01-10T10:16:35Z) - Improved Cotton Leaf Disease Classification Using Parameter-Efficient Deep Learning Framework [0.0]
Cotton crops, often called "white gold," face significant production challenges.<n>Deep learning and machine learning techniques have been explored to address this challenge.<n>We propose an innovative deep learning framework integrating a subset of trainable layers from MobileNet.
arXiv Detail & Related papers (2024-12-23T14:01:10Z) - CRTRE: Causal Rule Generation with Target Trial Emulation Framework [47.2836994469923]
We introduce a novel method called causal rule generation with target trial emulation framework (CRTRE)
CRTRE applies randomize trial design principles to estimate the causal effect of association rules.
We then incorporate such association rules for the downstream applications such as prediction of disease onsets.
arXiv Detail & Related papers (2024-11-10T02:40:06Z) - Classification of Endoscopy and Video Capsule Images using CNN-Transformer Model [1.0994755279455526]
This study proposes a hybrid model that combines the advantages of Transformers and Convolutional Neural Networks (CNNs) to enhance classification performance.
For the GastroVision dataset, our proposed model demonstrates excellent performance with Precision, Recall, F1 score, Accuracy, and Matthews Correlation Coefficient (MCC) of 0.8320, 0.8386, 0.8324, 0.8386, and 0.8191, respectively.
arXiv Detail & Related papers (2024-08-20T11:05:32Z) - A Channel Attention-Driven Hybrid CNN Framework for Paddy Leaf Disease Detection [0.0]
Early and accurate disease identification is important in agriculture to avoid crop loss and improve cultivation.
We propose a novel hybrid deep learning (DL) classifier with a channel attention mechanism and the Swish ReLU activation function.
Our model achieved a high F1-score of 99.76% and an accuracy of 99.74%, surpassing the performance of existing models.
arXiv Detail & Related papers (2024-07-16T14:17:26Z) - Enhancing Diagnostic Reliability of Foundation Model with Uncertainty Estimation in OCT Images [41.002573031087856]
We developed a foundation model with uncertainty estimation (FMUE) to detect 11 retinal conditions on optical coherence tomography ( OCT)
FMUE achieved a higher F1 score of 96.76% than two state-of-the-art algorithms, RETFound and UIOS, and got further improvement with thresholding strategy to 98.44%.
Our model is superior to two ophthalmologists with a higher F1 score (95.17% vs. 61.93% &71.72%)
arXiv Detail & Related papers (2024-06-18T03:04:52Z) - Brain Imaging-to-Graph Generation using Adversarial Hierarchical Diffusion Models for MCI Causality Analysis [44.45598796591008]
Brain imaging-to-graph generation (BIGG) framework is proposed to map functional magnetic resonance imaging (fMRI) into effective connectivity for mild cognitive impairment analysis.
The hierarchical transformers in the generator are designed to estimate the noise at multiple scales.
Evaluations of the ADNI dataset demonstrate the feasibility and efficacy of the proposed model.
arXiv Detail & Related papers (2023-05-18T06:54:56Z) - Uncertainty-inspired Open Set Learning for Retinal Anomaly
Identification [71.06194656633447]
We establish an uncertainty-inspired open-set (UIOS) model, which was trained with fundus images of 9 retinal conditions.
Our UIOS model with thresholding strategy achieved an F1 score of 99.55%, 97.01% and 91.91% for the internal testing set.
UIOS correctly predicted high uncertainty scores, which would prompt the need for a manual check in the datasets of non-target categories retinal diseases, low-quality fundus images, and non-fundus images.
arXiv Detail & Related papers (2023-04-08T10:47:41Z) - HistoPerm: A Permutation-Based View Generation Approach for Improving
Histopathologic Feature Representation Learning [33.1098457952173]
HistoPerm is a view generation method for representation learning using joint embedding architectures.
HistoPerm permutes augmented views of patches extracted from whole-slide histology images to improve classification performance.
Our results show that HistoPerm consistently improves patch- and slide-level classification performance in terms of accuracy, F1-score, and AUC.
arXiv Detail & Related papers (2022-09-13T17:35:08Z) - Vision Transformers for femur fracture classification [59.99241204074268]
The Vision Transformer (ViT) was able to correctly predict 83% of the test images.
Good results were obtained in sub-fractures with the largest and richest dataset ever.
arXiv Detail & Related papers (2021-08-07T10:12:42Z) - An Efficient Insect Pest Classification Using Multiple Convolutional
Neural Network Based Models [0.3222802562733786]
Insect pest classification is a difficult task because of various kinds, scales, shapes, complex backgrounds in the field, and high appearance similarity among insect species.
We present different convolutional neural network-based models in this work, including attention, feature pyramid, and fine-grained models.
The experimental results show that combining these convolutional neural network-based models can better perform than the state-of-the-art methods on these two datasets.
arXiv Detail & Related papers (2021-07-26T12:53:28Z) - Comparisons of Graph Neural Networks on Cancer Classification Leveraging
a Joint of Phenotypic and Genetic Features [7.381190270069632]
We evaluated variousgraph neural networks (GNNs) leveraging a joint of phenotypic and genetic features for cancer typeclassification.
Among GNNs, ChebNet, GraphSAGE, and TAGCN showed the best performance, while GATshowed the worst.
arXiv Detail & Related papers (2021-01-14T20:53:49Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
We propose the use of Multi-Source Transfer Learning to improve upon traditional Transfer Learning for the classification of COVID-19 from CT scans.
With our multi-source fine-tuning approach, our models outperformed baseline models fine-tuned with ImageNet.
Our best performing model was able to achieve an accuracy of 0.893 and a Recall score of 0.897, outperforming its baseline Recall score by 9.3%.
arXiv Detail & Related papers (2020-09-22T11:53:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.