Chip Placement with Diffusion
- URL: http://arxiv.org/abs/2407.12282v1
- Date: Wed, 17 Jul 2024 03:02:24 GMT
- Title: Chip Placement with Diffusion
- Authors: Vint Lee, Chun Deng, Leena Elzeiny, Pieter Abbeel, John Wawrzynek,
- Abstract summary: Macro placement defines the physical location of large collections of components, known as macros, on a 2-dimensional chip.
Existing learning-based methods fall short because of their reliance on reinforcement learning, which is slow and limits the flexibility of the agent.
We propose a novel architecture for the denoising model, as well as an algorithm to generate large synthetic datasets for pre-training.
We empirically show that our model can tackle the placement task, and achieve competitive performance on placement benchmarks compared to state-of-the-art methods.
- Score: 42.397340832801724
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Macro placement is a vital step in digital circuit design that defines the physical location of large collections of components, known as macros, on a 2-dimensional chip. The physical layout obtained during placement determines key performance metrics of the chip, such as power consumption, area, and performance. Existing learning-based methods typically fall short because of their reliance on reinforcement learning, which is slow and limits the flexibility of the agent by casting placement as a sequential process. Instead, we use a powerful diffusion model to place all components simultaneously. To enable such models to train at scale, we propose a novel architecture for the denoising model, as well as an algorithm to generate large synthetic datasets for pre-training. We empirically show that our model can tackle the placement task, and achieve competitive performance on placement benchmarks compared to state-of-the-art methods.
Related papers
- SMPLest-X: Ultimate Scaling for Expressive Human Pose and Shape Estimation [81.36747103102459]
Expressive human pose and shape estimation (EHPS) unifies body, hands, and face motion capture with numerous applications.
Current state-of-the-art methods focus on training innovative architectural designs on confined datasets.
We investigate the impact of scaling up EHPS towards a family of generalist foundation models.
arXiv Detail & Related papers (2025-01-16T18:59:46Z) - MERLOT: A Distilled LLM-based Mixture-of-Experts Framework for Scalable Encrypted Traffic Classification [19.476061046309052]
We present a scalable mixture-of-expert (MoE) based refinement of distilled large language model optimized for encrypted traffic classification.
Experiments on 10 datasets show superior or competitive performance over state-of-the-art models.
arXiv Detail & Related papers (2024-11-20T03:01:41Z) - LowFormer: Hardware Efficient Design for Convolutional Transformer Backbones [10.435069781620957]
Research in efficient vision backbones is evolving into models that are a mixture of convolutions and transformer blocks.
We analyze common modules and architectural design choices for backbones not in terms of MACs, but rather in actual throughput and latency.
We combine both macro and micro design to create a new family of hardware-efficient backbone networks called LowFormer.
arXiv Detail & Related papers (2024-09-05T12:18:32Z) - Learning to rank quantum circuits for hardware-optimized performance enhancement [0.0]
We introduce and experimentally test a machine-learning-based method for ranking logically equivalent quantum circuits.
We compare our method to two common approaches: random layout selection and a publicly available baseline called Mapomatic.
Our best model leads to a $1.8times$ reduction in selection error when compared to the baseline approach and a $3.2times$ reduction when compared to random selection.
arXiv Detail & Related papers (2024-04-09T18:00:01Z) - Take the Bull by the Horns: Hard Sample-Reweighted Continual Training
Improves LLM Generalization [165.98557106089777]
A key challenge is to enhance the capabilities of large language models (LLMs) amid a looming shortage of high-quality training data.
Our study starts from an empirical strategy for the light continual training of LLMs using their original pre-training data sets.
We then formalize this strategy into a principled framework of Instance-Reweighted Distributionally Robust Optimization.
arXiv Detail & Related papers (2024-02-22T04:10:57Z) - Majority Kernels: An Approach to Leverage Big Model Dynamics for Efficient Small Model Training [32.154166415680066]
Methods like distillation, compression or quantization help leverage the highly performant large models to induce smaller performant ones.
This paper explores the hypothesis that a single training run can simultaneously train a larger model for performance and derive a smaller model for deployment.
arXiv Detail & Related papers (2024-02-07T17:07:41Z) - PerfRL: A Small Language Model Framework for Efficient Code Optimization [14.18092813639534]
In this paper, we introduce PerfRL, an innovative framework designed to tackle the problem of code optimization.
Our framework leverages the capabilities of small language models (SLMs) and reinforcement learning (RL)
Our approach achieves similar or better results compared to state-of-the-art models using shorter training times and smaller pre-trained models.
arXiv Detail & Related papers (2023-12-09T19:50:23Z) - Bidirectional Knowledge Reconfiguration for Lightweight Point Cloud
Analysis [74.00441177577295]
Point cloud analysis faces computational system overhead, limiting its application on mobile or edge devices.
This paper explores feature distillation for lightweight point cloud models.
We propose bidirectional knowledge reconfiguration to distill informative contextual knowledge from the teacher to the student.
arXiv Detail & Related papers (2023-10-08T11:32:50Z) - Learning to Design Analog Circuits to Meet Threshold Specifications [2.5818330243826924]
We propose a method for generating from simulation data a dataset on which a system can be trained to design circuits to meet threshold specifications.
We show that our method consistently reaches success rate better than 90% at 5% error margin, while also improving data efficiency by upward of an order of magnitude.
arXiv Detail & Related papers (2023-07-25T23:25:05Z) - Scaling Pre-trained Language Models to Deeper via Parameter-efficient
Architecture [68.13678918660872]
We design a more capable parameter-sharing architecture based on matrix product operator (MPO)
MPO decomposition can reorganize and factorize the information of a parameter matrix into two parts.
Our architecture shares the central tensor across all layers for reducing the model size.
arXiv Detail & Related papers (2023-03-27T02:34:09Z) - FreeREA: Training-Free Evolution-based Architecture Search [17.202375422110553]
FreeREA is a custom cell-based evolution NAS algorithm that exploits an optimised combination of training-free metrics to rank architectures.
Our experiments, carried out on the common benchmarks NAS-Bench-101 and NATS-Bench, demonstrate that i) FreeREA is a fast, efficient, and effective search method for models automatic design.
arXiv Detail & Related papers (2022-06-17T11:16:28Z) - RLFlow: Optimising Neural Network Subgraph Transformation with World
Models [0.0]
We propose a model-based agent which learns to optimise the architecture of neural networks by performing a sequence of subgraph transformations to reduce model runtime.
We show our approach can match the performance of state of the art on common convolutional networks and outperform those by up to 5% on transformer-style architectures.
arXiv Detail & Related papers (2022-05-03T11:52:54Z) - Pretraining Graph Neural Networks for few-shot Analog Circuit Modeling
and Design [68.1682448368636]
We present a supervised pretraining approach to learn circuit representations that can be adapted to new unseen topologies or unseen prediction tasks.
To cope with the variable topological structure of different circuits we describe each circuit as a graph and use graph neural networks (GNNs) to learn node embeddings.
We show that pretraining GNNs on prediction of output node voltages can encourage learning representations that can be adapted to new unseen topologies or prediction of new circuit level properties.
arXiv Detail & Related papers (2022-03-29T21:18:47Z) - On Joint Learning for Solving Placement and Routing in Chip Design [70.30640973026415]
We propose a joint learning method by DeepPlace for the placement of macros and standard cells.
We also develop a joint learning approach via reinforcement learning to fulfill both macro placement and routing, which is called DeepPR.
Our method can effectively learn from experience and also provides intermediate placement for the post standard cell placement, within few hours for training.
arXiv Detail & Related papers (2021-10-30T11:41:49Z) - Style Curriculum Learning for Robust Medical Image Segmentation [62.02435329931057]
Deep segmentation models often degrade due to distribution shifts in image intensities between the training and test data sets.
We propose a novel framework to ensure robust segmentation in the presence of such distribution shifts.
arXiv Detail & Related papers (2021-08-01T08:56:24Z) - LoRD-Net: Unfolded Deep Detection Network with Low-Resolution Receivers [104.01415343139901]
We propose a deep detector entitled LoRD-Net for recovering information symbols from one-bit measurements.
LoRD-Net has a task-based architecture dedicated to recovering the underlying signal of interest.
We evaluate the proposed receiver architecture for one-bit signal recovery in wireless communications.
arXiv Detail & Related papers (2021-02-05T04:26:05Z) - Learning to Continuously Optimize Wireless Resource In Episodically
Dynamic Environment [55.91291559442884]
This work develops a methodology that enables data-driven methods to continuously learn and optimize in a dynamic environment.
We propose to build the notion of continual learning into the modeling process of learning wireless systems.
Our design is based on a novel min-max formulation which ensures certain fairness" across different data samples.
arXiv Detail & Related papers (2020-11-16T08:24:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.