Quantum vs. Symplectic Computers
- URL: http://arxiv.org/abs/2407.12755v1
- Date: Wed, 17 Jul 2024 17:29:41 GMT
- Title: Quantum vs. Symplectic Computers
- Authors: Igor Volovich,
- Abstract summary: symplectic computation involves a sequence of symplectic transformations and measurements.
The Schr"odinger equation in its standard complex form describes the unitary evolution of a quantum system.
This quantum-symplectic duality can be leveraged to enhance the capabilities of quantum and symplectic computers.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: In this paper, we propose the concept of symplectic computers, which have the potential to be more powerful than quantum computers. Unlike quantum computing, which consists of a sequence of unitary transformations (gates) and projectors (measurements), symplectic computation involves a sequence of symplectic transformations and measurements. The proposal to explore symplectic computers is based on the following quantum-symplectic duality. The Schr\"odinger equation in its standard complex form describes the unitary evolution of a quantum system, while its real form describes the symplectic evolution of a classical mechanical system. This quantum-symplectic duality can be leveraged to enhance the capabilities of quantum and symplectic computers. In this symplectic approach, the role of a quantum bit (qubit) is taken by a symplectic bit (symbit).
Related papers
- Simulation of open quantum systems on universal quantum computers [15.876768787615179]
We present an innovative and scalable method to simulate open quantum systems using quantum computers.
We define an adjoint density matrix as a counterpart of the true density matrix, which reduces to a mixed-unitary quantum channel.
accurate long-time simulation can also be achieved as the adjoint density matrix and the true dissipated one converges to the same state.
arXiv Detail & Related papers (2024-05-31T09:07:27Z) - A quantum computing concept for 1-D elastic wave simulation with exponential speedup [0.0]
We present a quantum computing concept for 1-D elastic wave propagation in heterogeneous media.
The method rests on a finite-difference approximation, followed by a sparsity-preserving transformation of the discrete elastic wave equation to a Schr"odinger equation.
An implementation on an error-free quantum simulator verifies our approach and forms the basis of numerical experiments.
arXiv Detail & Related papers (2023-12-22T14:58:01Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Characterizing a non-equilibrium phase transition on a quantum computer [0.0]
We use the Quantinuum H1-1 quantum computer to realize a quantum extension of a simple classical disease spreading process.
We are able to implement large instances of the model with $73$ sites and up to $72$ circuit layers.
This work demonstrates how quantum computers capable of mid-circuit resets, measurements, and conditional logic enable the study of difficult problems in quantum many-body physics.
arXiv Detail & Related papers (2022-09-26T17:59:06Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - A prototype of quantum von Neumann architecture [0.0]
We propose a model of universal quantum computer system, the quantum version of the von Neumann architecture.
It uses ebits as elements of the quantum memory unit, and qubits as elements of the quantum control unit and processing unit.
Our primary study demonstrates the manifold power of quantum information and paves the way for the creation of quantum computer systems.
arXiv Detail & Related papers (2021-12-17T06:33:31Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum walk processes in quantum devices [55.41644538483948]
We study how to represent quantum walk on a graph as a quantum circuit.
Our approach paves way for the efficient implementation of quantum walks algorithms on quantum computers.
arXiv Detail & Related papers (2020-12-28T18:04:16Z) - Bit-Slicing the Hilbert Space: Scaling Up Accurate Quantum Circuit
Simulation to a New Level [10.765480856320018]
We enhance quantum circuit simulation in two dimensions: accuracy and scalability.
Experimental results demonstrate that our method can be superior to the state-of-the-art for various quantum circuits.
arXiv Detail & Related papers (2020-07-18T01:26:40Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
We apply a quantum algorithm to a D-Wave quantum annealer to solve a small scale seismic inversions problem.
The accuracy achieved by the quantum computer is at least as good as that of the classical computer.
arXiv Detail & Related papers (2020-05-06T14:18:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.