論文の概要: AI Agents and Education: Simulated Practice at Scale
- arxiv url: http://arxiv.org/abs/2407.12796v1
- Date: Thu, 20 Jun 2024 05:26:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 08:57:39.456770
- Title: AI Agents and Education: Simulated Practice at Scale
- Title(参考訳): AIエージェントと教育 - スケールでのシミュレートされた実践
- Authors: Ethan Mollick, Lilach Mollick, Natalie Bach, LJ Ciccarelli, Ben Przystanski, Daniel Ravipinto,
- Abstract要約: 本稿では,適応型教育シミュレーション作成における生成AIの可能性について検討する。
複数のAIエージェントのシステムを活用することで、シミュレーションはパーソナライズされた学習体験を提供することができる。
我々は、AIの教育提供能力を示すベンチャーキャピタルピッチシミュレータであるPitchQuestのプロトタイプについて説明する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper explores the potential of generative AI in creating adaptive educational simulations. By leveraging a system of multiple AI agents, simulations can provide personalized learning experiences, offering students the opportunity to practice skills in scenarios with AI-generated mentors, role-players, and instructor-facing evaluators. We describe a prototype, PitchQuest, a venture capital pitching simulator that showcases the capabilities of AI in delivering instruction, facilitating practice, and providing tailored feedback. The paper discusses the pedagogy behind the simulation, the technology powering it, and the ethical considerations in using AI for education. While acknowledging the limitations and need for rigorous testing, we propose that generative AI can significantly lower the barriers to creating effective, engaging simulations, opening up new possibilities for experiential learning at scale.
- Abstract(参考訳): 本稿では,適応型教育シミュレーション作成における生成AIの可能性について検討する。
複数のAIエージェントのシステムを活用することで、シミュレーションはパーソナライズされた学習体験を提供し、AI生成メンター、ロールプレイヤ、インストラクターによるシナリオでスキルを実践する機会を提供する。
PitchQuestという,AIによる指導の提供,実践の促進,適切なフィードバックの提供といった能力を示す,ベンチャーキャピタルのピッチングシミュレータのプロトタイプについて説明する。
本稿では、シミュレーションの背景にある教育、それを支える技術、そしてAIを教育に利用する際の倫理的考察について論じる。
厳密なテストの必要性と限界を認識しながら、生成AIは効果的で魅力的なシミュレーションを作成するための障壁を著しく減らし、大規模な経験的学習の新たな可能性を開くことができると提案する。
関連論文リスト
- AI-Tutoring in Software Engineering Education [0.7631288333466648]
我々は,GPT-3.5-TurboモデルをAI-TutorとしてAPASアルテミスに組み込むことで,探索的なケーススタディを行った。
この発見は、タイムリーなフィードバックやスケーラビリティといった利点を浮き彫りにしている。
しかし,AI-Tutor を用いた場合,一般的な応答や学習進行抑制に対する学生の懸念も明らかであった。
論文 参考訳(メタデータ) (2024-04-03T08:15:08Z) - KAUCUS: Knowledge Augmented User Simulators for Training Language Model
Assistants [3.724713116252253]
有用な対話データを生成するシミュレータを作成することにより、効果的な指示追従アシスタントを開発することができる。
以前のユーザシミュレータは一般的に多様性に欠けており、ほとんどはクローズドドメインであり、厳密なスキーマを必要としていた。
本稿では,知識強化型ユーザシミュレータフレームワークであるKaucusを紹介し,多様なユーザシミュレータ作成プロセスの概要について述べる。
論文 参考訳(メタデータ) (2024-01-29T06:57:02Z) - RealGen: Retrieval Augmented Generation for Controllable Traffic
Scenarios [62.89459646611976]
RealGenは、トラフィックシナリオ生成のための新しい検索ベースのコンテキスト内学習フレームワークである。
RealGenは、複数の検索されたサンプルの振る舞いを勾配のない方法で組み合わせることで、新しいシナリオを合成する。
このコンテキスト内学習フレームワークは、シナリオを編集する機能を含む多種多様な生成機能を提供する。
論文 参考訳(メタデータ) (2023-12-19T23:11:06Z) - RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation [68.70755196744533]
RoboGenはジェネレーティブなロボットエージェントで、ジェネレーティブなシミュレーションを通じて、さまざまなロボットのスキルを自動的に学習する。
我々の研究は、大規模モデルに埋め込まれた広範囲で多目的な知識を抽出し、それらをロボット工学の分野に移す試みである。
論文 参考訳(メタデータ) (2023-11-02T17:59:21Z) - Exploration with Principles for Diverse AI Supervision [88.61687950039662]
次世代の予測を用いた大規模トランスフォーマーのトレーニングは、AIの画期的な進歩を生み出した。
この生成AIアプローチは印象的な結果をもたらしたが、人間の監督に大きく依存している。
この人間の監視への強い依存は、AIイノベーションの進歩に重大なハードルをもたらす。
本稿では,高品質なトレーニングデータを自律的に生成することを目的とした,探索型AI(EAI)という新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-10-13T07:03:39Z) - Waymax: An Accelerated, Data-Driven Simulator for Large-Scale Autonomous
Driving Research [76.93956925360638]
Waymaxは、マルチエージェントシーンにおける自動運転のための新しいデータ駆動シミュレータである。
TPU/GPUなどのハードウェアアクセラレータで完全に動作し、トレーニング用のグラフ内シミュレーションをサポートする。
我々は、一般的な模倣と強化学習アルゴリズムのスイートをベンチマークし、異なる設計決定に関するアブレーション研究を行った。
論文 参考訳(メタデータ) (2023-10-12T20:49:15Z) - AI-Generated Images as Data Source: The Dawn of Synthetic Era [61.879821573066216]
生成AIは、現実世界の写真によく似た合成画像を作成する可能性を解き放った。
本稿では、これらのAI生成画像を新しいデータソースとして活用するという革新的な概念を探求する。
実際のデータとは対照的に、AI生成データには、未整合のアブリダンスやスケーラビリティなど、大きなメリットがある。
論文 参考訳(メタデータ) (2023-10-03T06:55:19Z) - Towards Building AI-CPS with NVIDIA Isaac Sim: An Industrial Benchmark
and Case Study for Robotics Manipulation [18.392301524812645]
代表的サイバー物理システム(CPS)として、ロボットマニピュレータは様々な学術研究や産業プロセスで広く採用されている。
ロボット操作の最近の研究は、適応性と性能を向上させるために人工知能(AI)アプローチをコントローラとして採用し始めている。
本稿では,ロボット操作のための公開産業ベンチマークを提案する。
論文 参考訳(メタデータ) (2023-07-31T18:21:45Z) - Explainability via Responsibility [0.9645196221785693]
本稿では,特定のトレーニングインスタンスをユーザに提供する,説明可能な人工知能へのアプローチを提案する。
我々は、AIエージェントの動作の説明を人間のユーザに提供する能力を近似することで、このアプローチを評価する。
論文 参考訳(メタデータ) (2020-10-04T20:41:03Z) - The Chef's Hat Simulation Environment for Reinforcement-Learning-Based
Agents [54.63186041942257]
本稿では,人間-ロボットインタラクションのシナリオで使用されるように設計されたChef's Hatカードゲームを実装する仮想シミュレーション環境を提案する。
本稿では,強化学習アルゴリズムにおける制御可能かつ再現可能なシナリオを提案する。
論文 参考訳(メタデータ) (2020-03-12T15:52:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。