論文の概要: FocusDiffuser: Perceiving Local Disparities for Camouflaged Object Detection
- arxiv url: http://arxiv.org/abs/2407.13133v1
- Date: Thu, 18 Jul 2024 03:45:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-19 18:53:59.357121
- Title: FocusDiffuser: Perceiving Local Disparities for Camouflaged Object Detection
- Title(参考訳): FocusDiffuser:カモフラーゲ型物体検出のための局所的差異の認識
- Authors: Jianwei Zhao, Xin Li, Fan Yang, Qiang Zhai, Ao Luo, Zicheng Jiao, Hong Cheng,
- Abstract要約: 本研究では,カモフラージュされた物体の検出と解釈を,生成モデルがいかに向上させるかを検討するために,新しい拡散モデルであるFocusDiffuserを提案する。
提案実験により,FocusDiffuserは生成的視点から,カモフラージュされた物体検出の課題に効果的に対処できることを示した。
- 参考スコア(独自算出の注目度): 16.41770092932024
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Detecting objects seamlessly blended into their surroundings represents a complex task for both human cognitive capabilities and advanced artificial intelligence algorithms. Currently, the majority of methodologies for detecting camouflaged objects mainly focus on utilizing discriminative models with various unique designs. However, it has been observed that generative models, such as Stable Diffusion, possess stronger capabilities for understanding various objects in complex environments; Yet their potential for the cognition and detection of camouflaged objects has not been extensively explored. In this study, we present a novel denoising diffusion model, namely FocusDiffuser, to investigate how generative models can enhance the detection and interpretation of camouflaged objects. We believe that the secret to spotting camouflaged objects lies in catching the subtle nuances in details. Consequently, our FocusDiffuser innovatively integrates specialized enhancements, notably the Boundary-Driven LookUp (BDLU) module and Cyclic Positioning (CP) module, to elevate standard diffusion models, significantly boosting the detail-oriented analytical capabilities. Our experiments demonstrate that FocusDiffuser, from a generative perspective, effectively addresses the challenge of camouflaged object detection, surpassing leading models on benchmarks like CAMO, COD10K and NC4K.
- Abstract(参考訳): 物体が周囲にシームレスに混ざり合っていることを検出することは、人間の認知能力と高度な人工知能アルゴリズムの両方にとって複雑なタスクである。
現在、カモフラージュされた物体を検出する手法の大半は、様々なユニークなデザインを持つ識別モデルの利用に重点を置いている。
しかし, 安定拡散のような生成モデルは, 複雑な環境下での様々な物体の理解能力が強く, カモフラージュされた物体の認識と検出の可能性は広く研究されていない。
本研究では,カモフラージュされた物体の検出と解釈を,生成モデルがいかに向上させるかを検討するために,新しい微分拡散モデルであるFocusDiffuserを提案する。
カモフラージュされた物体を見つける秘密は、細部において微妙なニュアンスを捉えることにあると我々は信じている。
その結果、FocusDiffuserは、特にBundary-Driven LookUp(BDLU)モジュールとCyclic Positioning(CP)モジュールを革新的に統合し、標準拡散モデルを高め、ディテール指向の分析能力を著しく向上させました。
実験の結果,FocusDiffuserは,CAMO, COD10K, NC4Kなどのベンチマークにおいて, カモフラージュされたオブジェクト検出の課題に効果的に対処していることがわかった。
関連論文リスト
- Learning Background Prompts to Discover Implicit Knowledge for Open Vocabulary Object Detection [101.15777242546649]
Open vocabulary Object Detection (OVD) は、ベースと新規の両方のカテゴリからオブジェクトを認識できる最適なオブジェクト検出器を求めることを目的としている。
近年の進歩は、知識蒸留を利用して、事前訓練された大規模視覚言語モデルからオブジェクト検出のタスクに洞察力のある知識を伝達している。
本稿では,暗黙的背景知識を活用するための学習バックグラウンドプロンプトを提案するため,LBPと呼ばれる新しいOVDフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-01T17:32:26Z) - Few-shot Oriented Object Detection with Memorable Contrastive Learning in Remote Sensing Images [11.217630579076237]
リモートセンシングの分野では、FSOD(Few-shot Object Detection)が注目されている。
本稿では,Few-shot Oriented Object Detection with Memorable Contrastive Learning (FOMC) という,リモートセンシングのための新しいFSOD法を提案する。
具体的には、従来の水平有界ボックスの代わりに指向的有界ボックスを用いて、任意指向の空中オブジェクトのより優れた特徴表現を学習する。
論文 参考訳(メタデータ) (2024-03-20T08:15:18Z) - Diffusion-Based Particle-DETR for BEV Perception [94.88305708174796]
Bird-Eye-View (BEV)は、自律走行車(AV)における視覚知覚のための最も広く使われているシーンの1つである。
近年の拡散法は、視覚知覚のための不確実性モデリングに有望なアプローチを提供するが、BEVの広い範囲において、小さな物体を効果的に検出することができない。
本稿では,BEVにおける拡散パラダイムと最先端の3Dオブジェクト検出器を組み合わせることで,この問題に対処する。
論文 参考訳(メタデータ) (2023-12-18T09:52:14Z) - ZoomNeXt: A Unified Collaborative Pyramid Network for Camouflaged Object Detection [70.11264880907652]
最近のオブジェクト(COD)は、現実のシナリオでは極めて複雑で難しい、視覚的にブレンドされたオブジェクトを周囲に分割しようと試みている。
本研究では,不明瞭な画像を観察したり,ズームインしたりアウトしたりする際の人間の行動を模倣する,効果的な統合協調ピラミッドネットワークを提案する。
我々のフレームワークは、画像とビデオのCODベンチマークにおいて、既存の最先端の手法を一貫して上回っている。
論文 参考訳(メタデータ) (2023-10-31T06:11:23Z) - Camouflaged Image Synthesis Is All You Need to Boost Camouflaged
Detection [65.8867003376637]
本研究では,カモフラージュデータの合成フレームワークを提案する。
提案手法では,既存の物体検出モデルのトレーニングに使用可能な,現実的なカモフラージュ画像の生成に生成モデルを用いる。
我々のフレームワークは3つのデータセット上で最先端の手法より優れています。
論文 参考訳(メタデータ) (2023-08-13T06:55:05Z) - Diffusion Model for Camouflaged Object Detection [2.592600158870236]
本稿では,拡散型物体検出のための拡散型フレームワーク diffCOD を提案する。
提案手法は,既存の11種類の最先端手法と比較して良好な性能を示す。
論文 参考訳(メタデータ) (2023-08-01T05:50:33Z) - CamDiff: Camouflage Image Augmentation via Diffusion Model [83.35960536063857]
CamDiffは、カモフラージュされたシーンで透明なオブジェクトを合成するための新しいアプローチだ。
我々は,潜伏拡散モデルを用いて,カモフラージュされたシーンで有能な物体を合成する。
当社のアプローチでは、フレキシブルな編集と大規模データセットの効率的な生成を低コストで実現している。
論文 参考訳(メタデータ) (2023-04-11T19:37:47Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
ドメイン適応によるオブジェクトの無傷な特徴を関連付ける新しい3D検出フレームワークを提案する。
我々は,KITTIの3D検出ベンチマークにおいて,精度と速度の両面で最新の性能を実現する。
論文 参考訳(メタデータ) (2022-08-24T16:54:38Z) - Towards Accurate Camouflaged Object Detection with Mixture Convolution and Interactive Fusion [45.45231015502287]
本稿では,大規模な受容場と効果的な特徴融合を統合されたフレームワークに統合する,新しい深層学習型COD手法を提案する。
提案手法は,大規模な受容場からのリッチなコンテキスト情報を集約する,効果的な融合戦略により,カモフラージュされた物体を検出する。
論文 参考訳(メタデータ) (2021-01-14T16:06:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。