Multimodal Label Relevance Ranking via Reinforcement Learning
- URL: http://arxiv.org/abs/2407.13221v1
- Date: Thu, 18 Jul 2024 07:06:49 GMT
- Title: Multimodal Label Relevance Ranking via Reinforcement Learning
- Authors: Taian Guo, Taolin Zhang, Haoqian Wu, Hanjun Li, Ruizhi Qiao, Xing Sun,
- Abstract summary: We introduce a novel method for multimodal label relevance ranking, named Label Relevance Ranking with Proximal Policy Optimization (LRtextsuperscript2PPO)
LRtextsuperscript2PPO first utilizes partial order pairs in the target domain to train a reward model.
We meticulously design state representation and a policy loss tailored for ranking tasks, enabling LRtextsuperscript2PPO to boost the performance of label relevance ranking model.
- Score: 30.03543589748649
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conventional multi-label recognition methods often focus on label confidence, frequently overlooking the pivotal role of partial order relations consistent with human preference. To resolve these issues, we introduce a novel method for multimodal label relevance ranking, named Label Relevance Ranking with Proximal Policy Optimization (LR\textsuperscript{2}PPO), which effectively discerns partial order relations among labels. LR\textsuperscript{2}PPO first utilizes partial order pairs in the target domain to train a reward model, which aims to capture human preference intrinsic to the specific scenario. Furthermore, we meticulously design state representation and a policy loss tailored for ranking tasks, enabling LR\textsuperscript{2}PPO to boost the performance of label relevance ranking model and largely reduce the requirement of partial order annotation for transferring to new scenes. To assist in the evaluation of our approach and similar methods, we further propose a novel benchmark dataset, LRMovieNet, featuring multimodal labels and their corresponding partial order data. Extensive experiments demonstrate that our LR\textsuperscript{2}PPO algorithm achieves state-of-the-art performance, proving its effectiveness in addressing the multimodal label relevance ranking problem. Codes and the proposed LRMovieNet dataset are publicly available at \url{https://github.com/ChazzyGordon/LR2PPO}.
Related papers
- Self-Calibrated Listwise Reranking with Large Language Models [137.6557607279876]
Large language models (LLMs) have been employed in reranking tasks through a sequence-to-sequence approach.
This reranking paradigm requires a sliding window strategy to iteratively handle larger candidate sets.
We propose a novel self-calibrated listwise reranking method, which aims to leverage LLMs to produce global relevance scores for ranking.
arXiv Detail & Related papers (2024-11-07T10:31:31Z) - Hypergraph Enhanced Knowledge Tree Prompt Learning for Next-Basket
Recommendation [50.55786122323965]
Next-basket recommendation (NBR) aims to infer the items in the next basket given the corresponding basket sequence.
HEKP4NBR transforms the knowledge graph (KG) into prompts, namely Knowledge Tree Prompt (KTP), to help PLM encode the Out-Of-Vocabulary (OOV) item IDs.
A hypergraph convolutional module is designed to build a hypergraph based on item similarities measured by an MoE model from multiple aspects.
arXiv Detail & Related papers (2023-12-26T02:12:21Z) - RankMatch: A Novel Approach to Semi-Supervised Label Distribution
Learning Leveraging Inter-label Correlations [52.549807652527306]
This paper introduces RankMatch, an innovative approach for Semi-Supervised Label Distribution Learning (SSLDL)
RankMatch effectively utilizes a small number of labeled examples in conjunction with a larger quantity of unlabeled data.
We establish a theoretical generalization bound for RankMatch, and through extensive experiments, demonstrate its superiority in performance against existing SSLDL methods.
arXiv Detail & Related papers (2023-12-11T12:47:29Z) - GaussianMLR: Learning Implicit Class Significance via Calibrated
Multi-Label Ranking [0.0]
We propose a novel multi-label ranking method: GaussianMLR.
It aims to learn implicit class significance values that determine the positive label ranks.
We show that our method is able to accurately learn a representation of the incorporated positive rank order.
arXiv Detail & Related papers (2023-03-07T14:09:08Z) - RLSEP: Learning Label Ranks for Multi-label Classification [0.0]
Multi-label ranking maps instances to a ranked set of predicted labels from multiple possible classes.
We propose a novel dedicated loss function to optimize models by incorporating penalties for incorrectly ranked pairs.
Our method achieves the best reported performance measures on both synthetic and real world ranked datasets.
arXiv Detail & Related papers (2022-12-08T00:59:09Z) - A Unified Positive-Unlabeled Learning Framework for Document-Level
Relation Extraction with Different Levels of Labeling [5.367772036988716]
Document-level relation extraction (RE) aims to identify relations between entities across multiple sentences.
We propose a unified positive-unlabeled learning framework - shift and squared ranking loss.
Our method achieves an improvement of about 14 F1 points relative to the previous baseline with incomplete labeling.
arXiv Detail & Related papers (2022-10-17T02:54:49Z) - Text Summarization with Oracle Expectation [88.39032981994535]
Extractive summarization produces summaries by identifying and concatenating the most important sentences in a document.
Most summarization datasets do not come with gold labels indicating whether document sentences are summary-worthy.
We propose a simple yet effective labeling algorithm that creates soft, expectation-based sentence labels.
arXiv Detail & Related papers (2022-09-26T14:10:08Z) - Group-aware Label Transfer for Domain Adaptive Person Re-identification [179.816105255584]
Unsupervised Adaptive Domain (UDA) person re-identification (ReID) aims at adapting the model trained on a labeled source-domain dataset to a target-domain dataset without any further annotations.
Most successful UDA-ReID approaches combine clustering-based pseudo-label prediction with representation learning and perform the two steps in an alternating fashion.
We propose a Group-aware Label Transfer (GLT) algorithm, which enables the online interaction and mutual promotion of pseudo-label prediction and representation learning.
arXiv Detail & Related papers (2021-03-23T07:57:39Z) - Document-Level Relation Extraction with Adaptive Thresholding and
Localized Context Pooling [34.93480801598084]
One document commonly contains multiple entity pairs, and one entity pair occurs multiple times in the document associated with multiple possible relations.
We propose two novel techniques, adaptive thresholding and localized context pooling, to solve the multi-label and multi-entity problems.
arXiv Detail & Related papers (2020-10-21T20:41:23Z) - Interaction Matching for Long-Tail Multi-Label Classification [57.262792333593644]
We present an elegant and effective approach for addressing limitations in existing multi-label classification models.
By performing soft n-gram interaction matching, we match labels with natural language descriptions.
arXiv Detail & Related papers (2020-05-18T15:27:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.