CoD, Towards an Interpretable Medical Agent using Chain of Diagnosis
- URL: http://arxiv.org/abs/2407.13301v2
- Date: Sun, 15 Sep 2024 08:43:17 GMT
- Title: CoD, Towards an Interpretable Medical Agent using Chain of Diagnosis
- Authors: Junying Chen, Chi Gui, Anningzhe Gao, Ke Ji, Xidong Wang, Xiang Wan, Benyou Wang,
- Abstract summary: Chain-of-Diagnosis (CoD) transforms the diagnostic process into a diagnostic chain that mirrors a physician's thought process.
CoD outputs the disease confidence distribution to ensure transparency in decision-making.
DiagnosisGPT is capable of diagnosing 9604 diseases.
- Score: 36.28995062833098
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The field of medical diagnosis has undergone a significant transformation with the advent of large language models (LLMs), yet the challenges of interpretability within these models remain largely unaddressed. This study introduces Chain-of-Diagnosis (CoD) to enhance the interpretability of LLM-based medical diagnostics. CoD transforms the diagnostic process into a diagnostic chain that mirrors a physician's thought process, providing a transparent reasoning pathway. Additionally, CoD outputs the disease confidence distribution to ensure transparency in decision-making. This interpretability makes model diagnostics controllable and aids in identifying critical symptoms for inquiry through the entropy reduction of confidences. With CoD, we developed DiagnosisGPT, capable of diagnosing 9604 diseases. Experimental results demonstrate that DiagnosisGPT outperforms other LLMs on diagnostic benchmarks. Moreover, DiagnosisGPT provides interpretability while ensuring controllability in diagnostic rigor.
Related papers
- KERAP: A Knowledge-Enhanced Reasoning Approach for Accurate Zero-shot Diagnosis Prediction Using Multi-agent LLMs [39.47350988195002]
Large language models (LLMs) have shown promise in leveraging language abilities and biomedical knowledge for diagnosis prediction.<n>We propose KERAP, a knowledge graph (KG)-enhanced reasoning approach that improves LLM-based diagnosis prediction through a multi-agent architecture.<n>Our framework consists of a linkage agent for mapping, a retrieval agent for structured knowledge extraction, and a prediction agent that iteratively refines diagnosis predictions.
arXiv Detail & Related papers (2025-07-03T16:35:11Z) - LLM-Driven Medical Document Analysis: Enhancing Trustworthy Pathology and Differential Diagnosis [13.435898630240416]
We propose a trustworthy medical document analysis platform that fine-tunes a LLaMA-v3 using low-rank adaptation.<n>Our approach utilizes DDXPlus, the largest benchmark dataset for differential diagnosis.<n>The developed web-based platform allows users to submit their own unstructured medical documents and receive accurate, explainable diagnostic results.
arXiv Detail & Related papers (2025-06-24T15:12:42Z) - Test-Time-Scaling for Zero-Shot Diagnosis with Visual-Language Reasoning [37.37330596550283]
We introduce a framework for reliable medical image diagnosis using vision-language models.<n>A test-time scaling strategy consolidates multiple candidate outputs into a reliable final diagnosis.<n>We evaluate our approach across various medical imaging modalities.
arXiv Detail & Related papers (2025-06-11T22:23:38Z) - An Explainable Diagnostic Framework for Neurodegenerative Dementias via Reinforcement-Optimized LLM Reasoning [1.5646349560044959]
We propose a framework that integrates two core components to enhance diagnostic transparency.<n>First, we introduce a modular pipeline for converting 3D T1-weighted brain MRIs into textual radiology reports.<n>Second, we explore the potential of modern Large Language Models (LLMs) to assist clinicians in the differential diagnosis.
arXiv Detail & Related papers (2025-05-26T13:18:32Z) - Uncertainty-Aware Large Language Models for Explainable Disease Diagnosis [11.093388930528022]
We introduce ConfiDx, an uncertainty-aware large language model (LLM) created by fine-tuning open-source LLMs with diagnostic criteria.<n>We formalized the task and assembled richly annotated datasets that capture varying degrees of diagnostic ambiguity.
arXiv Detail & Related papers (2025-05-06T12:12:48Z) - Improving Interactive Diagnostic Ability of a Large Language Model Agent Through Clinical Experience Learning [17.647875658030006]
This study investigates the underlying mechanisms behind the performance degradation phenomenon.
We developed a plug-and-play method enhanced (PPME) LLM agent, leveraging over 3.5 million electronic medical records from Chinese and American healthcare facilities.
Our approach integrates specialized models for initial disease diagnosis and inquiry into the history of the present illness, trained through supervised and reinforcement learning techniques.
arXiv Detail & Related papers (2025-02-24T06:24:20Z) - MedRAG: Enhancing Retrieval-augmented Generation with Knowledge Graph-Elicited Reasoning for Healthcare Copilot [47.77948063906033]
Retrieval-augmented generation (RAG) is a well-suited technique for retrieving privacy-sensitive Electronic Health Records.
This paper proposes MedRAG, a RAG model enhanced by knowledge graph (KG)-elicited reasoning for the medical domain.
Tests show MedRAG provides more specific diagnostic insights and outperforms state-of-the-art models in reducing misdiagnosis rates.
arXiv Detail & Related papers (2025-02-06T12:27:35Z) - CoMT: Chain-of-Medical-Thought Reduces Hallucination in Medical Report Generation [20.59298361626719]
We propose a chain-of-medical-thought approach (CoMT) to mitigate hallucinations in medical report generation.
CoMT intends to imitate the cognitive process of human doctors by decomposing diagnostic procedures.
arXiv Detail & Related papers (2024-06-17T12:03:32Z) - ContrastDiagnosis: Enhancing Interpretability in Lung Nodule Diagnosis
Using Contrastive Learning [23.541034347602935]
Clinicians' distrust of black box models has hindered the clinical deployment of AI products.
We propose ContrastDiagnosis, a straightforward yet effective interpretable diagnosis framework.
High diagnostic accuracy was achieved with AUC of 0.977 while maintain a high transparency and explainability.
arXiv Detail & Related papers (2024-03-08T13:00:52Z) - Medical Dialogue Generation via Intuitive-then-Analytical Differential
Diagnosis [14.17497921394565]
We propose a medical dialogue generation framework with the Intuitive-then-Analytic Differential Diagnosis (IADDx)
Our method starts with a differential diagnosis via retrieval-based intuitive association and subsequently refines it through a graph-enhanced analytic procedure.
Experimental results on two datasets validate the efficacy of our method.
arXiv Detail & Related papers (2024-01-12T12:35:19Z) - A Foundational Framework and Methodology for Personalized Early and
Timely Diagnosis [84.6348989654916]
We propose the first foundational framework for early and timely diagnosis.
It builds on decision-theoretic approaches to outline the diagnosis process.
It integrates machine learning and statistical methodology for estimating the optimal personalized diagnostic path.
arXiv Detail & Related papers (2023-11-26T14:42:31Z) - Xplainer: From X-Ray Observations to Explainable Zero-Shot Diagnosis [36.45569352490318]
We introduce Xplainer, a framework for explainable zero-shot diagnosis in the clinical setting.
Xplainer adapts the classification-by-description approach of contrastive vision-language models to the multi-label medical diagnosis task.
Our results suggest that Xplainer provides a more detailed understanding of the decision-making process.
arXiv Detail & Related papers (2023-03-23T16:07:31Z) - DxFormer: A Decoupled Automatic Diagnostic System Based on
Decoder-Encoder Transformer with Dense Symptom Representations [26.337392652262103]
A diagnosis-oriented dialogue system queries the patient's health condition and makes predictions about possible diseases through continuous interaction with the patient.
We propose a decoupled automatic diagnostic framework DxFormer, which divides the diagnosis process into two steps: symptom inquiry and disease diagnosis.
Our proposed model can effectively learn doctors' clinical experience and achieve the state-of-the-art results in terms of symptom recall and diagnostic accuracy.
arXiv Detail & Related papers (2022-05-08T01:52:42Z) - Interpretable Vertebral Fracture Diagnosis [69.68641439851777]
Black-box neural network models learn clinically relevant features for fracture diagnosis.
This work identifies the concepts networks use for vertebral fracture diagnosis in CT images.
arXiv Detail & Related papers (2022-03-30T13:07:41Z) - Anytime Diagnosis for Reconfiguration [52.77024349608834]
We introduce and analyze FlexDiag which is an anytime direct diagnosis approach.
We evaluate the algorithm with regard to performance and diagnosis quality using a configuration benchmark from the domain of feature models and an industrial configuration knowledge base from the automotive domain.
arXiv Detail & Related papers (2021-02-19T11:45:52Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
Clinical diagnosis, which aims to assign diagnosis codes for a patient based on the clinical note, plays an essential role in clinical decision-making.
We propose a novel framework to combine the inheritance-guided hierarchical assignment and co-occurrence graph propagation for clinical automatic diagnosis.
arXiv Detail & Related papers (2021-01-27T13:16:51Z) - Towards Causality-Aware Inferring: A Sequential Discriminative Approach
for Medical Diagnosis [142.90770786804507]
Medical diagnosis assistant (MDA) aims to build an interactive diagnostic agent to sequentially inquire about symptoms for discriminating diseases.
This work attempts to address these critical issues in MDA by taking advantage of the causal diagram.
We propose a propensity-based patient simulator to effectively answer unrecorded inquiry by drawing knowledge from the other records.
arXiv Detail & Related papers (2020-03-14T02:05:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.