Exploring the Evidence-Based SE Beliefs of Generative AI Tools
- URL: http://arxiv.org/abs/2407.13900v3
- Date: Fri, 01 Aug 2025 15:27:59 GMT
- Title: Exploring the Evidence-Based SE Beliefs of Generative AI Tools
- Authors: Chris Brown, Jason Cusati,
- Abstract summary: We investigate 17 evidence-based claims posited by empirical software engineering (SE) research across five generative AI tools.<n>Our findings show that generative AI tools have ambiguous beliefs regarding research claims and lack credible evidence to support responses.
- Score: 2.3480418671346164
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent innovations in generative artificial intelligence (AI), primarily powered by large language models (LLMs), have transformed how programmers develop and maintain software -- leading to new frontiers in software engineering (SE). The advanced capabilities of generative AI tools to support software development tasks have led to a rise in their adoption within software development workflows. However, little is known about how AI tools perceive evidence-based beliefs and practices verified by research findings. To this end, we conduct a preliminary evaluation conceptually replicating prior work to explore the "beliefs" of generative AI tools used to support software development tasks. We investigate 17 evidence-based claims posited by empirical SE research across five generative AI tools. Our findings show that generative AI tools have ambiguous beliefs regarding research claims and lack credible evidence to support responses. Based on our results, we provide implications for practitioners integrating generative AI-based systems into development contexts and shed light on future research directions to enhance the reliability and trustworthiness of generative AI -- aiming to increase awareness and adoption of evidence-based SE research findings in practice.
Related papers
- AI4Research: A Survey of Artificial Intelligence for Scientific Research [55.5452803680643]
We present a comprehensive survey on AI for Research (AI4Research)<n>We first introduce a systematic taxonomy to classify five mainstream tasks in AI4Research.<n>We identify key research gaps and highlight promising future directions.
arXiv Detail & Related papers (2025-07-02T17:19:20Z) - AI-Driven Automation Can Become the Foundation of Next-Era Science of Science Research [58.944125758758936]
The Science of Science (SoS) explores the mechanisms underlying scientific discovery.<n>The advent of artificial intelligence (AI) presents a transformative opportunity for the next generation of SoS.<n>We outline the advantages of AI over traditional methods, discuss potential limitations, and propose pathways to overcome them.
arXiv Detail & Related papers (2025-05-17T15:01:33Z) - Junior Software Developers' Perspectives on Adopting LLMs for Software Engineering: a Systematic Literature Review [17.22501688824729]
This paper provides an overview of junior software developers' perspectives and use of Large Language Model-based tools for software engineering (LLM4SE)
We conducted a systematic literature review following guidelines by Kitchenham et al. on 56 primary studies.
Only 8.9% of the studies provide a clear definition for junior software developers, and there is no uniformity.
arXiv Detail & Related papers (2025-03-10T17:25:24Z) - Human-AI Experience in Integrated Development Environments: A Systematic Literature Review [2.1749194587826026]
In-IDE HAX explores the evolving dynamics of Human-Computer Interaction in AI-assisted coding environments.<n>Our findings reveal that AI-assisted coding enhances developer productivity but also introduces challenges, such as verification overhead, automation bias, and over-reliance.<n>Concerns about code correctness, security, and maintainability highlight the urgent need for explainability, verification mechanisms, and adaptive user control.
arXiv Detail & Related papers (2025-03-08T12:40:18Z) - LLMs' Reshaping of People, Processes, Products, and Society in Software Development: A Comprehensive Exploration with Early Adopters [3.4069804433026314]
Large language models (LLMs) like OpenAI ChatGPT, Google Gemini, and GitHub Copilot are rapidly gaining traction in the software industry.
Our study provides a nuanced understanding of how LLMs are shaping the landscape of software development.
arXiv Detail & Related papers (2025-03-06T22:27:05Z) - Assessing LLMs for Front-end Software Architecture Knowledge [0.0]
Large Language Models (LLMs) have demonstrated significant promise in automating software development tasks.
This study investigates the capabilities of an LLM in understanding, reproducing, and generating structures within the VIPER architecture.
Experimental results, using ChatGPT 4 Turbo 2024-04-09, reveal that the LLM excelled in higher-order tasks like evaluating and creating, but faced challenges with lower-order tasks requiring precise retrieval of architectural details.
arXiv Detail & Related papers (2025-02-26T19:33:35Z) - From Selection to Generation: A Survey of LLM-based Active Learning [153.8110509961261]
Large Language Models (LLMs) have been employed for generating entirely new data instances and providing more cost-effective annotations.
This survey aims to serve as an up-to-date resource for researchers and practitioners seeking to gain an intuitive understanding of LLM-based AL techniques.
arXiv Detail & Related papers (2025-02-17T12:58:17Z) - Satori: Reinforcement Learning with Chain-of-Action-Thought Enhances LLM Reasoning via Autoregressive Search [57.28671084993782]
Large language models (LLMs) have demonstrated remarkable reasoning capabilities across diverse domains.
Recent studies have shown that increasing test-time computation enhances LLMs' reasoning capabilities.
We propose a two-stage training paradigm: 1) a small-scale format tuning stage to internalize the COAT reasoning format and 2) a large-scale self-improvement stage leveraging reinforcement learning.
arXiv Detail & Related papers (2025-02-04T17:26:58Z) - Large Language Models for Code Generation: The Practitioners Perspective [4.946128083535776]
Large Language Models (LLMs) have emerged as coding assistants, capable of generating source code from natural language prompts.
We propose and develop a multi-model unified platform to generate and execute code based on natural language prompts.
We conducted a survey with 60 software practitioners from 11 countries across four continents to evaluate the usability, performance, strengths, and limitations of each model.
arXiv Detail & Related papers (2025-01-28T14:52:16Z) - How Developers Interact with AI: A Taxonomy of Human-AI Collaboration in Software Engineering [8.65285948382426]
We propose a taxonomy of interaction types between developers and AI tools, identifying eleven distinct interaction types.<n>Building on this taxonomy, we outline a research agenda focused on optimizing AI interactions, improving developer control, and addressing trust and usability challenges in AI-assisted development.
arXiv Detail & Related papers (2025-01-15T12:53:49Z) - Experiences from Using LLMs for Repository Mining Studies in Empirical Software Engineering [12.504438766461027]
Large Language Models (LLMs) have transformed Software Engineering (SE) by providing innovative methods for analyzing software repositories.
Our research packages a framework, coined Prompt Refinement and Insights for Mining Empirical Software repositories (PRIMES)
Our findings indicate that standardizing prompt engineering and using PRIMES can enhance the reliability and accuracy of studies utilizing LLMs.
arXiv Detail & Related papers (2024-11-15T06:08:57Z) - Generative AI in Health Economics and Outcomes Research: A Taxonomy of Key Definitions and Emerging Applications, an ISPOR Working Group Report [12.204470166456561]
Generative AI shows significant potential in health economics and outcomes research (HEOR)<n>Generative AI shows significant potential in HEOR, enhancing efficiency, productivity, and offering novel solutions to complex challenges.<n>Foundation models are promising in automating complex tasks, though challenges remain in scientific reliability, bias, interpretability, and workflow integration.
arXiv Detail & Related papers (2024-10-26T15:42:50Z) - Dear Diary: A randomized controlled trial of Generative AI coding tools in the workplace [2.5280615594444567]
Generative AI coding tools are relatively new, and their impact on developers extends beyond traditional coding metrics.
This study aims to illuminate developers' preexisting beliefs about generative AI tools, their self perceptions, and how regular use of these tools may alter these beliefs.
Our findings reveal that the introduction and sustained use of generative AI coding tools significantly increases developers' perceptions of these tools as both useful and enjoyable.
arXiv Detail & Related papers (2024-10-24T00:07:27Z) - From LLMs to LLM-based Agents for Software Engineering: A Survey of Current, Challenges and Future [15.568939568441317]
We investigate the current practice and solutions for large language models (LLMs) and LLM-based agents for software engineering.
In particular we summarise six key topics: requirement engineering, code generation, autonomous decision-making, software design, test generation, and software maintenance.
We discuss the models and benchmarks used, providing a comprehensive analysis of their applications and effectiveness in software engineering.
arXiv Detail & Related papers (2024-08-05T14:01:15Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
Large Language Models (LLMs) have demonstrated impressive capability in many natural language tasks.
LLMs are prone to produce errors, hallucinations and inconsistent statements when performing multi-step reasoning.
We introduce Q*, a framework for guiding LLMs decoding process with deliberative planning.
arXiv Detail & Related papers (2024-06-20T13:08:09Z) - Toward Self-Improvement of LLMs via Imagination, Searching, and Criticizing [56.75702900542643]
We introduce AlphaLLM for the self-improvements of Large Language Models.
It integrates Monte Carlo Tree Search (MCTS) with LLMs to establish a self-improving loop.
Our experimental results show that AlphaLLM significantly enhances the performance of LLMs without additional annotations.
arXiv Detail & Related papers (2024-04-18T15:21:34Z) - Generative AI Agent for Next-Generation MIMO Design: Fundamentals, Challenges, and Vision [76.4345564864002]
Next-generation multiple input multiple output (MIMO) is expected to be intelligent and scalable.
We propose the concept of the generative AI agent, which is capable of generating tailored and specialized contents.
We present two compelling case studies that demonstrate the effectiveness of leveraging the generative AI agent for performance analysis.
arXiv Detail & Related papers (2024-04-13T02:39:36Z) - VURF: A General-purpose Reasoning and Self-refinement Framework for Video Understanding [65.12464615430036]
This paper introduces a Video Understanding and Reasoning Framework (VURF) based on the reasoning power of Large Language Models (LLMs)
Ours is a novel approach to extend the utility of LLMs in the context of video tasks.
We harness their contextual learning capabilities to generate executable visual programs for video understanding.
arXiv Detail & Related papers (2024-03-21T18:00:00Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
Large Language Model (LLM) inference is rapidly evolving, presenting a unique blend of opportunities and challenges.
Our survey stands out from traditional literature reviews by not only summarizing the current state of research but also by introducing a framework based on roofline model.
This framework identifies the bottlenecks when deploying LLMs on hardware devices and provides a clear understanding of practical problems.
arXiv Detail & Related papers (2024-02-26T07:33:05Z) - An Empirical Study on Usage and Perceptions of LLMs in a Software
Engineering Project [1.433758865948252]
Large Language Models (LLMs) represent a leap in artificial intelligence, excelling in tasks using human language(s)
In this paper, we analyze the AI-generated code, prompts used for code generation, and the human intervention levels to integrate the code into the code base.
Our findings suggest that LLMs can play a crucial role in the early stages of software development.
arXiv Detail & Related papers (2024-01-29T14:32:32Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
Large language models (LLMs) are trained on a combination of natural language and formal language (code)
Code translates high-level goals into executable steps, featuring standard syntax, logical consistency, abstraction, and modularity.
arXiv Detail & Related papers (2024-01-01T16:51:20Z) - Experiential Co-Learning of Software-Developing Agents [83.34027623428096]
Large language models (LLMs) have brought significant changes to various domains, especially in software development.
We introduce Experiential Co-Learning, a novel LLM-agent learning framework.
Experiments demonstrate that the framework enables agents to tackle unseen software-developing tasks more effectively.
arXiv Detail & Related papers (2023-12-28T13:50:42Z) - Exploring the intersection of Generative AI and Software Development [0.0]
The synergy between generative AI and Software Engineering emerges as a transformative frontier.
This whitepaper delves into the unexplored realm, elucidating how generative AI techniques can revolutionize software development.
It serves as a guide for stakeholders, urging discussions and experiments in the application of generative AI in Software Engineering.
arXiv Detail & Related papers (2023-12-21T19:23:23Z) - Software Testing with Large Language Models: Survey, Landscape, and
Vision [32.34617250991638]
Pre-trained large language models (LLMs) have emerged as a breakthrough technology in natural language processing and artificial intelligence.
This paper provides a comprehensive review of the utilization of LLMs in software testing.
arXiv Detail & Related papers (2023-07-14T08:26:12Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
Recent advances in machine learning and AI are disrupting technological innovation, product development, and society as a whole.
AI has contributed less to fundamental science in part because large data sets of high-quality data for scientific practice and model discovery are more difficult to access.
Here we explore and investigate aspects of an AI-driven, automated, closed-loop approach to scientific discovery.
arXiv Detail & Related papers (2023-07-09T21:16:56Z) - Learning from learning machines: a new generation of AI technology to
meet the needs of science [59.261050918992325]
We outline emerging opportunities and challenges to enhance the utility of AI for scientific discovery.
The distinct goals of AI for industry versus the goals of AI for science create tension between identifying patterns in data versus discovering patterns in the world from data.
arXiv Detail & Related papers (2021-11-27T00:55:21Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.