Double Gradient Reversal Network for Single-Source Domain Generalization in Multi-mode Fault Diagnosis
- URL: http://arxiv.org/abs/2407.13978v1
- Date: Fri, 19 Jul 2024 02:06:41 GMT
- Title: Double Gradient Reversal Network for Single-Source Domain Generalization in Multi-mode Fault Diagnosis
- Authors: Guangqiang Li, M. Amine Atoui, Xiangshun Li,
- Abstract summary: Domain-invariant fault features from single-mode data for unseen mode fault diagnosis poses challenges.
Existing methods utilize a generator module to simulate samples of unseen modes.
Double gradient reversal network (DGRN) is proposed to achieve high classification accuracy on unseen modes.
- Score: 1.9389881806157316
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Domain generalization achieves fault diagnosis on unseen modes. In process industrial systems, fault samples are limited, and only single-mode fault data can be obtained. Extracting domain-invariant fault features from single-mode data for unseen mode fault diagnosis poses challenges. Existing methods utilize a generator module to simulate samples of unseen modes. However, multi-mode samples contain complex spatiotemporal information, which brings significant difficulties to accurate sample generation. Therefore, double gradient reversal network (DGRN) is proposed. First, the model is pre-trained to acquire fault knowledge from the single seen mode. Then, pseudo-fault feature generation strategy is designed by Adaptive instance normalization, to simulate fault features of unseen mode. The dual adversarial training strategy is created to enhance the diversity of pseudo-fault features, which models unseen modes with significant distribution differences. Subsequently, domain-invariant feature extraction strategy is constructed by contrastive learning and adversarial learning. This strategy extracts common features of faults and helps multi-mode fault diagnosis. Finally, the experiments were conducted on Tennessee Eastman process and continuous stirred-tank reactor. The experiments demonstrate that DGRN achieves high classification accuracy on unseen modes while maintaining a small model size.
Related papers
- HDM: Hybrid Diffusion Model for Unified Image Anomaly Detection [3.9378898870716523]
Anomaly detection plays a vital role in applications such as industrial quality inspection and medical imaging.
Existing methods often struggle with complex and diverse anomaly patterns.
We propose a novel hybrid diffusion model (HDM) that integrates generation and discrimination into a unified framework.
arXiv Detail & Related papers (2025-02-26T15:05:58Z) - Boundless Across Domains: A New Paradigm of Adaptive Feature and Cross-Attention for Domain Generalization in Medical Image Segmentation [1.93061220186624]
Domain-invariant representation learning is a powerful method for domain generalization.
Previous approaches face challenges such as high computational demands, training instability, and limited effectiveness with high-dimensional data.
We propose an Adaptive Feature Blending (AFB) method that generates out-of-distribution samples while exploring the in-distribution space.
arXiv Detail & Related papers (2024-11-22T12:06:24Z) - Multi-Source and Test-Time Domain Adaptation on Multivariate Signals using Spatio-Temporal Monge Alignment [59.75420353684495]
Machine learning applications on signals such as computer vision or biomedical data often face challenges due to the variability that exists across hardware devices or session recordings.
In this work, we propose Spatio-Temporal Monge Alignment (STMA) to mitigate these variabilities.
We show that STMA leads to significant and consistent performance gains between datasets acquired with very different settings.
arXiv Detail & Related papers (2024-07-19T13:33:38Z) - USD: Unsupervised Soft Contrastive Learning for Fault Detection in Multivariate Time Series [6.055410677780381]
We introduce a combination of data augmentation and soft contrastive learning, specifically designed to capture the multifaceted nature of state behaviors more accurately.
This dual strategy significantly boosts the model's ability to distinguish between normal and abnormal states, leading to a marked improvement in fault detection performance across multiple datasets and settings.
arXiv Detail & Related papers (2024-05-25T14:48:04Z) - Degradation Modeling and Prognostic Analysis Under Unknown Failure Modes [17.72961616186932]
operating units often experience various failure modes in complex systems.
Current prognostic approaches either ignore failure modes during degradation or assume known failure mode labels.
High dimensionality and complex relations of sensor signals make it challenging to identify the failure modes accurately.
arXiv Detail & Related papers (2024-02-29T15:57:09Z) - Invariant Anomaly Detection under Distribution Shifts: A Causal
Perspective [6.845698872290768]
Anomaly detection (AD) is the machine learning task of identifying highly discrepant abnormal samples.
Under the constraints of a distribution shift, the assumption that training samples and test samples are drawn from the same distribution breaks down.
We attempt to increase the resilience of anomaly detection models to different kinds of distribution shifts.
arXiv Detail & Related papers (2023-12-21T23:20:47Z) - Multi-Class Anomaly Detection based on Regularized Discriminative
Coupled hypersphere-based Feature Adaptation [85.15324009378344]
This paper introduces a new model by including class discriminative properties obtained by a modified Regularized Discriminative Variational Auto-Encoder (RD-VAE) in the feature extraction process.
The proposed Regularized Discriminative Coupled-hypersphere-based Feature Adaptation (RD-CFA) forms a solution for multi-class anomaly detection.
arXiv Detail & Related papers (2023-11-24T14:26:07Z) - MTS-DVGAN: Anomaly Detection in Cyber-Physical Systems using a Dual
Variational Generative Adversarial Network [7.889342625283858]
Deep generative models are promising in detecting novel cyber-physical attacks, mitigating the vulnerability of Cyber-physical systems (CPSs) without relying on labeled information.
This article proposes a novel unsupervised dual variational generative adversarial model named MST-DVGAN.
The central concept is to enhance the model's discriminative capability by widening the distinction between reconstructed abnormal samples and their normal counterparts.
arXiv Detail & Related papers (2023-11-04T11:19:03Z) - Learning Invariant Molecular Representation in Latent Discrete Space [52.13724532622099]
We propose a new framework for learning molecular representations that exhibit invariance and robustness against distribution shifts.
Our model achieves stronger generalization against state-of-the-art baselines in the presence of various distribution shifts.
arXiv Detail & Related papers (2023-10-22T04:06:44Z) - LafitE: Latent Diffusion Model with Feature Editing for Unsupervised
Multi-class Anomaly Detection [12.596635603629725]
We develop a unified model to detect anomalies from objects belonging to multiple classes when only normal data is accessible.
We first explore the generative-based approach and investigate latent diffusion models for reconstruction.
We introduce a feature editing strategy that modifies the input feature space of the diffusion model to further alleviate identity shortcuts''
arXiv Detail & Related papers (2023-07-16T14:41:22Z) - Understanding Deep Generative Models with Generalized Empirical
Likelihoods [3.7978679293562587]
We show how to combine techniques from Maximum Mean Discrepancy and Generalized Empirical Likelihood to create distribution tests that retain per-sample interpretability.
We find that such tests predict the degree of mode dropping and mode imbalance up to 60% better than metrics such as improved precision/recall.
arXiv Detail & Related papers (2023-06-16T11:33:47Z) - Diversity-Measurable Anomaly Detection [106.07413438216416]
We propose Diversity-Measurable Anomaly Detection (DMAD) framework to enhance reconstruction diversity.
PDM essentially decouples deformation from embedding and makes the final anomaly score more reliable.
arXiv Detail & Related papers (2023-03-09T05:52:42Z) - Robust Domain Adaptive Object Detection with Unified Multi-Granularity Alignment [59.831917206058435]
Domain adaptive detection aims to improve the generalization of detectors on target domain.
Recent approaches achieve domain adaption through feature alignment in different granularities via adversarial learning.
We introduce a unified multi-granularity alignment (MGA)-based detection framework for domain-invariant feature learning.
arXiv Detail & Related papers (2023-01-01T08:38:07Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
We focus on a specific use case in anomaly detection where the distribution of normal samples is supported by a lower-dimensional manifold.
We adapt a self-supervised learning regime that exploits discriminative information during training but focuses on the submanifold of normal examples.
We achieve a new state-of-the-art result on the MVTec AD dataset -- a challenging benchmark for visual anomaly detection in the manufacturing domain.
arXiv Detail & Related papers (2022-06-23T14:16:30Z) - Adaptive Memory Networks with Self-supervised Learning for Unsupervised
Anomaly Detection [54.76993389109327]
Unsupervised anomaly detection aims to build models to detect unseen anomalies by only training on the normal data.
We propose a novel approach called Adaptive Memory Network with Self-supervised Learning (AMSL) to address these challenges.
AMSL incorporates a self-supervised learning module to learn general normal patterns and an adaptive memory fusion module to learn rich feature representations.
arXiv Detail & Related papers (2022-01-03T03:40:21Z) - GANs with Variational Entropy Regularizers: Applications in Mitigating
the Mode-Collapse Issue [95.23775347605923]
Building on the success of deep learning, Generative Adversarial Networks (GANs) provide a modern approach to learn a probability distribution from observed samples.
GANs often suffer from the mode collapse issue where the generator fails to capture all existing modes of the input distribution.
We take an information-theoretic approach and maximize a variational lower bound on the entropy of the generated samples to increase their diversity.
arXiv Detail & Related papers (2020-09-24T19:34:37Z) - MMCGAN: Generative Adversarial Network with Explicit Manifold Prior [78.58159882218378]
We propose to employ explicit manifold learning as prior to alleviate mode collapse and stabilize training of GAN.
Our experiments on both the toy data and real datasets show the effectiveness of MMCGAN in alleviating mode collapse, stabilizing training, and improving the quality of generated samples.
arXiv Detail & Related papers (2020-06-18T07:38:54Z) - SUOD: Accelerating Large-Scale Unsupervised Heterogeneous Outlier
Detection [63.253850875265115]
Outlier detection (OD) is a key machine learning (ML) task for identifying abnormal objects from general samples.
We propose a modular acceleration system, called SUOD, to address it.
arXiv Detail & Related papers (2020-03-11T00:22:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.