Free-Fermionic Topological Quantum Sensors
- URL: http://arxiv.org/abs/2201.07102v3
- Date: Fri, 26 Aug 2022 14:47:55 GMT
- Title: Free-Fermionic Topological Quantum Sensors
- Authors: Saubhik Sarkar, Chiranjib Mukhopadhyay, Abhijeet Alase, Abolfazl Bayat
- Abstract summary: We analytically demonstrate that quantum enhanced sensing is possible using topological edge states near the phase boundary.
While neither symmetry-breaking nor long-range entanglement are essential, gap closing remains as the major candidate for the ultimate source of quantum enhanced sensing.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Second order quantum phase transitions, with well-known features such as
long-range entanglement, symmetry breaking, and gap closing, exhibit quantum
enhancement for sensing at criticality. However, it is unclear which of these
features are responsible for this enhancement. To address this issue, we
investigate phase transitions in free-fermionic topological systems that
exhibit neither symmetry-breaking nor long-range entanglement. We analytically
demonstrate that quantum enhanced sensing is possible using topological edge
states near the phase boundary. Remarkably, such enhancement also endures for
ground states of such models that are accessible in solid state experiments. We
illustrate the results with 1D Su-Schrieffer-Heeger chain and a 2D Chern
insulator which are both experimentally accessible. While neither
symmetry-breaking nor long-range entanglement are essential, gap closing
remains as the major candidate for the ultimate source of quantum enhanced
sensing. In addition, we also provide a fixed and simple measurement strategy
that achieves near-optimal precision for sensing using generic edge states
irrespective of the parameter value. This paves the way for development of
topological quantum sensors which are expected to also be robust against local
perturbations.
Related papers
- Bosonic Entanglement and Quantum Sensing from Energy Transfer in two-tone Floquet Systems [1.2499537119440245]
Quantum-enhanced sensors, which surpass the standard quantum limit (circuit) and approach the fundamental precision limits dictated by quantum mechanics, are finding applications across a wide range of scientific fields.
We introduce entanglement and preserve quantum information among many particles in a sensing circuit.
We propose a superconducting-entangled sensor in the microwave regime, highlighting its potential for practical applications in high-precision measurements.
arXiv Detail & Related papers (2024-10-15T00:48:01Z) - Multicritical quantum sensors driven by symmetry-breaking [0.7499722271664147]
We analytically demonstrate that symmetry-breaking can drive a quantum enhanced sensing in single- or multi parameter estimation.
We show that it is possible to obtain super-Heisenberg scaling by combining the effects of symmetry-breaking and gapless-to-gapped transition.
arXiv Detail & Related papers (2024-07-19T15:57:02Z) - Crossing exceptional points in non-Hermitian quantum systems [41.94295877935867]
We reveal the behavior of two-photon quantum states in non-Hermitian systems across the exceptional point.
We demonstrate a switching in the quantum interference of photons directly at the exceptional point.
arXiv Detail & Related papers (2024-07-17T14:04:00Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Edge modes and symmetry-protected topological states in open quantum
systems [0.0]
Topological order offers possibilities for processing quantum information which can be immune to imperfections.
We show robustness of certain aspects of $ZZtimes Z$ symmetry-protected trajectory (SPT) order against a wide class of dissipation channels.
Our work thus proposes a novel framework to study the dynamics of dissipative SPT phases.
arXiv Detail & Related papers (2023-10-13T21:09:52Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [46.99825956909532]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Quantifying measurement-induced quantum-to-classical crossover using an
open-system entanglement measure [49.1574468325115]
We study the entanglement of a single particle under continuous measurements.
We find that the entanglement at intermediate time scales shows the same qualitative behavior as a function of the measurement strength.
arXiv Detail & Related papers (2023-04-06T09:45:11Z) - Enhanced nonlinear quantum metrology with weakly coupled solitons and
particle losses [58.720142291102135]
We offer an interferometric procedure for phase parameters estimation at the Heisenberg (up to 1/N) and super-Heisenberg scaling levels.
The heart of our setup is the novel soliton Josephson Junction (SJJ) system providing the formation of the quantum probe.
We illustrate that such states are close to the optimal ones even with moderate losses.
arXiv Detail & Related papers (2021-08-07T09:29:23Z) - Heisenberg-limited quantum metrology using collective dephasing [0.0]
Decoherence during the time evolution typically degrades the performance of quantum metrology.
We show, however, that under suitable conditions, this decoherence can be exploited to improve the sensitivity.
arXiv Detail & Related papers (2021-03-22T06:47:50Z) - Experimental Realization of Nonadiabatic Holonomic Single-Qubit Quantum
Gates with Two Dark Paths in a Trapped Ion [41.36300605844117]
We show nonadiabatic holonomic single-qubit quantum gates on two dark paths in a trapped $171mathrmYb+$ ion based on four-level systems with resonant drives.
We find that nontrivial holonomic two-qubit quantum gates can also be realized within current experimental technologies.
arXiv Detail & Related papers (2021-01-19T06:57:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.