論文の概要: Integrating Artificial Intelligence into Operating Systems: A Comprehensive Survey on Techniques, Applications, and Future Directions
- arxiv url: http://arxiv.org/abs/2407.14567v2
- Date: Sun, 22 Dec 2024 13:04:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 15:51:38.447830
- Title: Integrating Artificial Intelligence into Operating Systems: A Comprehensive Survey on Techniques, Applications, and Future Directions
- Title(参考訳): 人工知能をオペレーティングシステムに統合する:技術,応用,今後の方向性に関する総合的な調査
- Authors: Yifan Zhang, Xinkui Zhao, Ziying Li, Jianwei Yin, Lufei Zhang, Zuoning Chen,
- Abstract要約: 人工知能とオペレーティング・システムの統合はイノベーションの重要なフロンティアとして現れます。
AI-OS統合の現状は、先進的なコンピューティングパラダイムの進化を操る上で、その重要な役割を強調している。
Intelligent Operating Systemsの今後の展望は、OS設計がいかにして新たな可能性をもたらすかを議論する。
- 参考スコア(独自算出の注目度): 16.28550500194823
- License:
- Abstract: In the era of the Internet of Everything, operating systems (OSs) face unprecedented challenges posed by an evolving application landscape and increasingly heterogeneous hardware ecosystems. This shift toward increasingly dynamic and unpredictable operational contexts presents significant challenges for both OS developers and users. Against this backdrop, the fusion of Artificial Intelligence (AI) with Operating Systems emerges as a critical frontier for innovation. This survey delves into the intricate interplay between AI and OSs, illustrating how existing OS mechanisms combined with AI significantly elevate the performance, security, and efficiency of modern operating systems. We investigate a range of AI methodologies applied to optimize core OS functionalities and clarify the correlation to related studies. Our analysis touches on the existing hurdles and prospective avenues in this interdisciplinary domain, underscoring the imperative for robust and seamless integration of AI capabilities into OS architectures. Through an examination of illustrative case studies and cutting-edge developments, we offer a thorough review of the current status of AI-OS integration, accentuating its pivotal role in steering the evolution of advanced computing paradigms. We also envision the promising prospects of Intelligent Operating Systems, debating how groundbreaking OS designs will usher in novel possibilities and highlight the central role that AI will assume in propelling these next-generation systems forward. This forward-thinking outlook illuminates the profound influence of AI on the foundational elements of computing, heralding the advent of a new epoch characterized by intelligent, self-adapting, and highly adaptive software ecosystems.
- Abstract(参考訳): Internet of Everythingの時代、オペレーティングシステム(OS)は、進化するアプリケーションランドスケープと、ますますヘテロジニアスなハードウェアエコシステムによって引き起こされる前例のない課題に直面しています。
この動的で予測不可能な運用コンテキストへのシフトは、OS開発者とユーザ双方にとって大きな課題となる。
このような背景から、人工知能(AI)とオペレーティング・システム(OS)の融合がイノベーションの重要なフロンティアとして現れている。
この調査は、AIとOSの複雑な相互作用を掘り下げ、既存のOSメカニズムとAIが組み合わさって、現代のオペレーティングシステムのパフォーマンス、セキュリティ、効率が大幅に向上する様子を描いている。
我々は,コアOSの機能最適化と関連する研究との相関を明らかにするために,AI手法を応用した範囲について検討する。
私たちの分析は、この学際的な領域における既存のハードルと将来的な道に触れ、AI機能をOSアーキテクチャに堅牢かつシームレスに統合するための必須条件を説明している。
実証的なケーススタディと最先端の開発の検証を通じて、AI-OS統合の現状を徹底的にレビューし、先進的なコンピューティングパラダイムの進化を推し進める上で、その重要な役割を強調します。
我々はまた、Intelligent Operating Systemsの有望な展望を思い起こさせ、OS設計が新たな可能性をもたらすかを議論し、これらの次世代システムを前進させる上でAIが想定する中心的な役割を強調します。
この先進的な展望は、AIがコンピューティングの基礎的要素に深く影響し、インテリジェントで自己適応的で高度に適応したソフトウェアエコシステムを特徴とする新しいエポックの出現を告げるものだ。
関連論文リスト
- Collaborative AI in Sentiment Analysis: System Architecture, Data Prediction and Deployment Strategies [3.3374611485861116]
大規模言語モデル(LLM)に基づく人工知能技術は、特に感情分析においてゲームチェンジャーとなっている。
しかし、複雑なマルチモーダルデータを処理するための多様なAIモデルの統合と、それに伴う機能抽出の高コストは、大きな課題を呈している。
本研究では,様々なAIシステムにまたがるタスクを効率的に分散・解決するための協調型AIフレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-17T06:14:34Z) - Networking Systems for Video Anomaly Detection: A Tutorial and Survey [55.28514053969056]
ビデオ異常検出(VAD)は人工知能(AI)コミュニティにおける基本的な研究課題である。
本稿では,各種深層学習駆動型VAD経路の基本前提,学習フレームワーク,適用シナリオについて述べる。
我々は、産業用IoTおよびスマート都市における最新のNSVAD研究と、デプロイ可能なNSVADのためのエンドクラウド共同アーキテクチャを紹介します。
論文 参考訳(メタデータ) (2024-05-16T02:00:44Z) - Revolutionizing System Reliability: The Role of AI in Predictive Maintenance Strategies [0.0]
この研究は、AI、特に機械学習とニューラルネットワークが、予測メンテナンス戦略を強化するためにどのように利用されているかを探求している。
この記事では、AIによる予測メンテナンスの実装の有効性と課題について、洞察を提供する。
論文 参考訳(メタデータ) (2024-04-20T19:31:05Z) - Socialized Learning: A Survey of the Paradigm Shift for Edge Intelligence in Networked Systems [62.252355444948904]
本稿では,エッジインテリジェンス(EI)と社会学習(SL)の統合に関する文献レビューの結果について述べる。
SLは、エージェントの協調能力と集団知性を増幅することを目的とした、社会的原則と行動に基づく学習パラダイムである。
ソーシャル化アーキテクチャ、ソーシャル化トレーニング、ソーシャル化推論の3つの統合コンポーネントについて詳しく検討し、その強みと弱点を分析した。
論文 参考訳(メタデータ) (2024-04-20T11:07:29Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
エージェントAI - 大きな基盤モデルをエージェントアクションに統合する具体的システム。
本稿では,エージェント・ファウンデーション・モデル(エージェント・ファウンデーション・モデル)を提案する。
論文 参考訳(メタデータ) (2024-02-28T16:09:56Z) - AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities
and Challenges [60.56413461109281]
IT運用のための人工知能(AIOps)は、AIのパワーとIT運用プロセスが生成するビッグデータを組み合わせることを目的としている。
我々は、IT運用活動が発信する重要なデータの種類、分析における規模と課題、そしてどのように役立つかについて深く議論する。
主要なAIOpsタスクは、インシデント検出、障害予測、根本原因分析、自動アクションに分類します。
論文 参考訳(メタデータ) (2023-04-10T15:38:12Z) - Proceedings of the Robust Artificial Intelligence System Assurance
(RAISA) Workshop 2022 [0.0]
RAISAワークショップは、堅牢な人工知能(AI)と機械学習(ML)システムの研究、開発、応用に焦点を当てる。
特定のMLアルゴリズムに関してロバストネスを研究するのではなく、システムアーキテクチャのレベルでロバストネスの保証を検討することを目的としています。
論文 参考訳(メタデータ) (2022-02-10T01:15:50Z) - Artificial Intelligence in the Low-Level Realm -- A Survey [0.0]
我々は、OSの主要な責務において、AIアプローチ、特に機械学習を利用する方法と努力を求めます。
言い換えれば、答えるべき主な質問は、従来のOSカーネルのメインタスクを改善する上で、AIがどのように直接的に役割を担ってきたか、という点である。
論文 参考訳(メタデータ) (2021-09-19T19:36:54Z) - Pervasive AI for IoT Applications: Resource-efficient Distributed
Artificial Intelligence [45.076180487387575]
人工知能(AI)は、さまざまなモノのインターネット(IoT)アプリケーションやサービスにおいて大きなブレークスルーを目の当たりにした。
これは、感覚データへの容易なアクセスと、リアルタイムデータストリームのゼッタバイト(ZB)を生成する広帯域/ユビキタスデバイスの巨大なスケールによって駆動される。
広範コンピューティングと人工知能の合流により、Pervasive AIはユビキタスIoTシステムの役割を拡大した。
論文 参考訳(メタデータ) (2021-05-04T23:42:06Z) - Towards an Interface Description Template for AI-enabled Systems [77.34726150561087]
再利用(Reuse)は、システムアーキテクチャを既存のコンポーネントでインスタンス化しようとする、一般的なシステムアーキテクチャのアプローチである。
現在、コンポーネントが当初目的としていたものと異なるシステムで運用する可搬性を評価するために必要な情報の選択をガイドするフレームワークは存在しない。
我々は、AI対応コンポーネントの主情報をキャプチャするインターフェイス記述テンプレートの確立に向けて、現在進行中の作業について述べる。
論文 参考訳(メタデータ) (2020-07-13T20:30:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。