論文の概要: Fever Detection with Infrared Thermography: Enhancing Accuracy through Machine Learning Techniques
- arxiv url: http://arxiv.org/abs/2407.15302v1
- Date: Mon, 22 Jul 2024 00:05:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-23 16:30:24.196010
- Title: Fever Detection with Infrared Thermography: Enhancing Accuracy through Machine Learning Techniques
- Title(参考訳): 赤外線サーモグラフィによるフィーバー検出:機械学習技術による精度向上
- Authors: Parsa Razmara, Tina Khezresmaeilzadeh, B. Keith Jenkins,
- Abstract要約: 赤外線サーモグラフィー(IRT)は体温を測定するための重要な非接触法であることが証明されている。
従来の非接触赤外線温度計(NCIT)は、読書において大きな変動を示すことが多い。
そこで我々は,温度測定の精度と信頼性を高めるために,機械学習アルゴリズムをIRTと統合した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The COVID-19 pandemic has underscored the necessity for advanced diagnostic tools in global health systems. Infrared Thermography (IRT) has proven to be a crucial non-contact method for measuring body temperature, vital for identifying febrile conditions associated with infectious diseases like COVID-19. Traditional non-contact infrared thermometers (NCITs) often exhibit significant variability in readings. To address this, we integrated machine learning algorithms with IRT to enhance the accuracy and reliability of temperature measurements. Our study systematically evaluated various regression models using heuristic feature engineering techniques, focusing on features' physiological relevance and statistical significance. The Convolutional Neural Network (CNN) model, utilizing these techniques, achieved the lowest RMSE of 0.2223, demonstrating superior performance compared to results reported in previous literature. Among non-neural network models, the Binning method achieved the best performance with an RMSE of 0.2296. Our findings highlight the potential of combining advanced feature engineering with machine learning to improve diagnostic tools' effectiveness, with implications extending to other non-contact or remote sensing biomedical applications. This paper offers a comprehensive analysis of these methodologies, providing a foundation for future research in the field of non-invasive medical diagnostics.
- Abstract(参考訳): 新型コロナウイルス(COVID-19)のパンデミックは、世界保健システムにおける高度な診断ツールの必要性を浮き彫りにした。
赤外線サーモグラフィー(IRT)は、体温を測定するための重要な非接触法であり、新型コロナウイルス(COVID-19)などの感染症に関連する発熱状態を特定するのに不可欠である。
従来の非接触赤外線温度計(NCIT)は、読書において大きな変動を示すことが多い。
そこで我々は,温度測定の精度と信頼性を高めるために,機械学習アルゴリズムをIRTと統合した。
本研究は, ヒューリスティックな特徴工学技術を用いて, 特徴の生理的意義と統計的意義に着目し, 様々な回帰モデルを体系的に評価した。
これらの手法を用いた畳み込みニューラルネットワーク(CNN)モデルは,0.2223の最低RMSEを達成した。
非ニューラルネットワークモデルの中で、Binning法はRMSE 0.2296で最高の性能を達成した。
我々の研究は、高度な機能工学と機械学習を組み合わせることで、診断ツールの有効性を向上し、他の非接触またはリモートセンシングバイオメディカルアプリケーションにまで拡張する可能性を強調した。
本稿では,これらの方法論を包括的に分析し,非侵襲的医療診断分野における今後の研究の基盤を提供する。
関連論文リスト
- Enhancing Eye Disease Diagnosis with Deep Learning and Synthetic Data Augmentation [0.0]
本稿では,糖尿病網膜症の早期発見と管理を目的としたアンサンブル学習手法を提案する。
提案したモデルはAPTOSデータセット上でテストされ、以前のモデルと比較して検証精度(99%)の優位性を示している。
論文 参考訳(メタデータ) (2024-07-25T04:09:17Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
筋萎縮性側索硬化症(Amyotrophic Lateral Sclerosis、ALS)は、急速に進行する神経変性疾患である。
iDPP@CLEF 2024チャレンジを先導した今回の調査は,アプリから得られるセンサデータを活用することに焦点を当てている。
論文 参考訳(メタデータ) (2024-07-10T19:17:23Z) - Distributed Federated Learning-Based Deep Learning Model for Privacy MRI Brain Tumor Detection [11.980634373191542]
分散トレーニングは、大規模な医用画像データセットの処理を容易にし、疾患診断の精度と効率を向上させる。
本稿では,データプライバシと効率的な疾患診断という2つの課題に対処するために,Federated Learning(FL)を活用した医用画像分類の革新的なアプローチを提案する。
論文 参考訳(メタデータ) (2024-04-15T09:07:19Z) - Explainable AI in Diagnosing and Anticipating Leukemia Using Transfer
Learning Method [0.0]
本研究は,小児および10代に流行する急性リンパ芽球性白血病(ALL)に焦点をあてる。
ディープラーニング技術を活用したコンピュータ支援診断(CAD)モデルを用いた自動検出手法を提案する。
提案手法は98.38%の精度を達成し、他の試験モデルよりも優れていた。
論文 参考訳(メタデータ) (2023-12-01T10:37:02Z) - EKGNet: A 10.96{\mu}W Fully Analog Neural Network for Intra-Patient
Arrhythmia Classification [79.7946379395238]
心電図不整脈分類におけるアナログ計算と深層学習を組み合わせた統合的アプローチを提案する。
本稿では,低消費電力で高精度にアーカイブするハードウェア効率と完全アナログ不整脈分類アーキテクチャであるEKGNetを提案する。
論文 参考訳(メタデータ) (2023-10-24T02:37:49Z) - AMDNet23: A combined deep Contour-based Convolutional Neural Network and
Long Short Term Memory system to diagnose Age-related Macular Degeneration [0.0]
本研究は、畳み込み(CNN)と短期記憶(LSTM)からなるニューラルネットワークを組み合わせた深層学習システムAMDNet23を用いて、眼底部から老化性黄斑変性(AMD)疾患を自動的に検出する。
提案されたハイブリッド深度AMDNet23モデルは、AMD眼疾患の検出を実証し、実験結果は精度96.50%、特異度99.32%、感度96.5%、F1スコア96.49.0%を達成した。
論文 参考訳(メタデータ) (2023-08-30T07:48:32Z) - Brain Imaging-to-Graph Generation using Adversarial Hierarchical Diffusion Models for MCI Causality Analysis [44.45598796591008]
機能的磁気共鳴画像(fMRI)を軽度認知障害解析のための効果的な接続性にマッピングするために,脳画像から画像へのBIGG(Brain Imaging-to-graph generation)フレームワークを提案する。
発電機の階層変換器は、複数のスケールでノイズを推定するように設計されている。
ADNIデータセットの評価は,提案モデルの有効性と有効性を示す。
論文 参考訳(メタデータ) (2023-05-18T06:54:56Z) - Deep-Learning Tool for Early Identifying Non-Traumatic Intracranial
Hemorrhage Etiology based on CT Scan [40.51754649947294]
深層学習モデルは、2011年1月から2018年4月までに収集された非外傷性ICHを用いた1868個のNCCTスキャンを用いて開発された。
診断成績は臨床医の成績と比較した。
臨床医は, システム拡張による特定の出血エチオロジーの感度, 特異性, 精度を著しく改善した。
論文 参考訳(メタデータ) (2023-02-02T08:45:17Z) - Diagnose Like a Radiologist: Hybrid Neuro-Probabilistic Reasoning for
Attribute-Based Medical Image Diagnosis [42.624671531003166]
本稿では,属性に基づく医用画像診断のためのハイブリッド型ニューロ確率推論アルゴリズムを提案する。
我々は,ハイブリッド推論アルゴリズムを2つの困難な画像診断タスクに適用することに成功している。
論文 参考訳(メタデータ) (2022-08-19T12:06:46Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
ヘマトキシリンとエオシン(H&E)で染色した組織学的肺スライドにおける癌病変の自動検出のためのグラフベーススパース成分分析(GS-PCA)ネットワークを提案する。
我々は,SVM K-rasG12D肺がんモデルから得られたH&Eスライダーの精度・リコール率,Fスコア,谷本係数,レシーバ演算子特性(ROC)の曲線下領域を用いて,提案アルゴリズムの性能評価を行った。
論文 参考訳(メタデータ) (2021-10-27T19:28:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。