An Ad-hoc graph node vector embedding algorithm for general knowledge graphs using Kinetica-Graph
- URL: http://arxiv.org/abs/2407.15906v1
- Date: Mon, 22 Jul 2024 14:43:10 GMT
- Title: An Ad-hoc graph node vector embedding algorithm for general knowledge graphs using Kinetica-Graph
- Authors: B. Kaan Karamete, Eli Glaser,
- Abstract summary: This paper discusses how to generate general graph node embeddings from knowledge graph representations.
The embedded space is composed of a number of sub-features to mimic both local affinity and remote structural relevance.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper discusses how to generate general graph node embeddings from knowledge graph representations. The embedded space is composed of a number of sub-features to mimic both local affinity and remote structural relevance. These sub-feature dimensions are defined by several indicators that we speculate to catch nodal similarities, such as hop-based topological patterns, the number of overlapping labels, the transitional probabilities (markov-chain probabilities), and the cluster indices computed by our recursive spectral bisection (RSB) algorithm. These measures are flattened over the one dimensional vector space into their respective sub-component ranges such that the entire set of vector similarity functions could be used for finding similar nodes. The error is defined by the sum of pairwise square differences across a randomly selected sample of graph nodes between the assumed embeddings and the ground truth estimates as our novel loss function. The ground truth is estimated to be a combination of pairwise Jaccard similarity and the number of overlapping labels. Finally, we demonstrate a multi-variate stochastic gradient descent (SGD) algorithm to compute the weighing factors among sub-vector spaces to minimize the average error using a random sampling logic.
Related papers
- Graph Fourier MMD for Signals on Graphs [67.68356461123219]
We propose a novel distance between distributions and signals on graphs.
GFMMD is defined via an optimal witness function that is both smooth on the graph and maximizes difference in expectation.
We showcase it on graph benchmark datasets as well as on single cell RNA-sequencing data analysis.
arXiv Detail & Related papers (2023-06-05T00:01:17Z) - Hierarchical Multiresolution Feature- and Prior-based Graphs for
Classification [3.1219977244201056]
We formulated the classification problem on three variants of multiresolution neighborhood graphs and the graph of a hierarchical conditional random field.
Each of these graphs was weighted and undirected and could thus incorporate the spatial or hierarchical relationships in all directions.
It expanded on a random walker graph by using novel mechanisms to derive the edge weights of its spatial feature-based subgraph.
arXiv Detail & Related papers (2023-06-03T15:58:38Z) - Geometric Graph Representation Learning via Maximizing Rate Reduction [73.6044873825311]
Learning node representations benefits various downstream tasks in graph analysis such as community detection and node classification.
We propose Geometric Graph Representation Learning (G2R) to learn node representations in an unsupervised manner.
G2R maps nodes in distinct groups into different subspaces, while each subspace is compact and different subspaces are dispersed.
arXiv Detail & Related papers (2022-02-13T07:46:24Z) - SIGMA: A Structural Inconsistency Reducing Graph Matching Algorithm [21.1095092767297]
We propose a novel criterion to measure the graph matching accuracy, structural inconsistency (SI)
Specifically, SI incorporates the heat diffusion wavelet to accommodate the multi-hop structure of the graphs.
We show that SIGMA can be derived by using a mirror descent method to solve the Gromov-Wasserstein distance with a novel K-hop-structure-based matching costs.
arXiv Detail & Related papers (2022-02-06T15:18:37Z) - Entropic Optimal Transport in Random Graphs [8.7314407902481]
In graph analysis, a classic task consists in computing similarity measures between (groups of) nodes.
We show that it is possible to consistently estimate distances between groups of nodes in the latent space.
arXiv Detail & Related papers (2022-01-11T13:52:34Z) - Spectral-Spatial Global Graph Reasoning for Hyperspectral Image
Classification [50.899576891296235]
Convolutional neural networks have been widely applied to hyperspectral image classification.
Recent methods attempt to address this issue by performing graph convolutions on spatial topologies.
arXiv Detail & Related papers (2021-06-26T06:24:51Z) - Spectral clustering under degree heterogeneity: a case for the random
walk Laplacian [83.79286663107845]
This paper shows that graph spectral embedding using the random walk Laplacian produces vector representations which are completely corrected for node degree.
In the special case of a degree-corrected block model, the embedding concentrates about K distinct points, representing communities.
arXiv Detail & Related papers (2021-05-03T16:36:27Z) - COLOGNE: Coordinated Local Graph Neighborhood Sampling [1.6498361958317633]
replacing discrete unordered objects such as graph nodes by real-valued vectors is at the heart of many approaches to learning from graph data.
We address the problem of learning discrete node embeddings such that the coordinates of the node vector representations are graph nodes.
This opens the door to designing interpretable machine learning algorithms for graphs as all attributes originally present in the nodes are preserved.
arXiv Detail & Related papers (2021-02-09T11:39:06Z) - Scaling Graph Clustering with Distributed Sketches [1.1011268090482575]
We present a method inspired by spectral clustering where we instead use matrix sketches derived from random dimension-reducing projections.
We show that our method produces embeddings that yield performant clustering results given a fully-dynamic block model stream.
We also discuss the effects of block model parameters upon the required dimensionality of the subsequent embeddings, and show how random projections could significantly improve the performance of graph clustering in distributed memory.
arXiv Detail & Related papers (2020-07-24T17:38:04Z) - Inverse Graph Identification: Can We Identify Node Labels Given Graph
Labels? [89.13567439679709]
Graph Identification (GI) has long been researched in graph learning and is essential in certain applications.
This paper defines a novel problem dubbed Inverse Graph Identification (IGI)
We propose a simple yet effective method that makes the node-level message passing process using Graph Attention Network (GAT) under the protocol of GI.
arXiv Detail & Related papers (2020-07-12T12:06:17Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
An important challenge in the field of exponential random graphs (ERGs) is the fitting of non-trivial ERGs on large graphs.
We propose an approximative framework to such non-trivial ERGs that result in dyadic independence (i.e., edge independent) distributions.
Our methods are scalable to sparse graphs consisting of millions of nodes.
arXiv Detail & Related papers (2020-02-14T11:42:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.