論文の概要: Orbital-free density functional theory with first-quantized quantum subroutines
- arxiv url: http://arxiv.org/abs/2407.16191v1
- Date: Tue, 23 Jul 2024 05:34:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-24 18:35:54.520302
- Title: Orbital-free density functional theory with first-quantized quantum subroutines
- Title(参考訳): 第一量子化量子サブルーチンを用いた軌道自由密度汎関数理論
- Authors: Yusuke Nishiya, Hirofumi Nishi, Taichi Kosugi, Yu-ichiro Matsushita,
- Abstract要約: 確率的想像時間進化(PITE)を用いた軌道自由密度汎関数理論(OFDFT)を実現する量子古典ハイブリッドスキームを提案する。
PITEはOFDFTの一部に適用され、各自己整合体(SCF)反復におけるハミルトニアン基底状態を探索する。
ハミルトンの基底状態エネルギーを得るには、回路深さが$O(log N_mathrmg)$が必要である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this study, we propose a quantum-classical hybrid scheme for performing orbital-free density functional theory (OFDFT) using probabilistic imaginary-time evolution (PITE), designed for the era of fault-tolerant quantum computers (FTQC), as a material calculation method for large-scale systems. PITE is applied to the part of OFDFT that searches the ground state of the Hamiltonian in each self-consistent field (SCF) iteration, while the other parts such as electron density and Hamiltonian updates are performed by existing algorithms on classical computers. When the simulation cell is discretized into $N_\mathrm{g}$ grid points, combined with quantum phase estimation (QPE), it is shown that obtaining the ground state energy of Hamiltonian requires a circuit depth of $O(\log N_\mathrm{g})$. The ground state calculation part in OFDFT is expected to be accelerated, for example, by creating an appropriate preconditioner from the estimated ground state energy for the locally optimal block preconditioned conjugate gradient (LOBPCG) method.
- Abstract(参考訳): 本研究では,大規模システムの材料計算手法として,故障耐性量子コンピュータ(FTQC)の時代に設計された確率的想像時間進化(PITE)を用いて,軌道自由密度汎関数理論(OFDFT)を実行する量子古典ハイブリッド方式を提案する。
PITEは、各自己整合体(SCF)反復におけるハミルトニアン基底状態を探索するOFDFTの一部に適用され、電子密度やハミルトニアン更新などの他の部分は、古典的コンピュータ上の既存のアルゴリズムによって実行される。
シミュレーションセルを$N_\mathrm{g}$グリッドポイントに分解し、量子位相推定(QPE)と組み合わせると、ハミルトンの基底状態エネルギーを得るためには、回路深さが$O(\log N_\mathrm{g})$であることが示されている。
OFDFTの基底状態計算部は、例えば、局所最適ブロック前条件共役勾配(LOBPCG)法に対する推定基底状態エネルギーから適切なプレコンディショナを作成することにより、加速することが期待されている。
関連論文リスト
- Ground State Preparation via Dynamical Cooling [0.46664938579243576]
本稿では,量子力学シミュレーションに基づく基底状態生成アルゴリズムを提案する。
我々の主な洞察は、量子信号処理によるシフト符号関数によるハミルトン変換である。
このアプローチはエネルギーギャップの事前知識に頼らず、入浴をモデル化するために追加のキュービットを必要としない。
論文 参考訳(メタデータ) (2024-04-08T18:16:25Z) - Neutron-nucleus dynamics simulations for quantum computers [49.369935809497214]
一般ポテンシャルを持つ中性子核シミュレーションのための新しい量子アルゴリズムを開発した。
耐雑音性トレーニング法により、ノイズの存在下でも許容される境界状態エネルギーを提供する。
距離群可換性(DGC)と呼ばれる新しい可換性スキームを導入し、その性能をよく知られたqubit-commutativityスキームと比較する。
論文 参考訳(メタデータ) (2024-02-22T16:33:48Z) - Sparse Quantum State Preparation for Strongly Correlated Systems [0.0]
原理として、指数関数的にスケールする多電子波関数を線形にスケールする量子ビットレジスタに符号化することは、従来の量子化学法の限界を克服するための有望な解決策を提供する。
基底状態量子アルゴリズムが実用的であるためには、量子ビットの初期化が要求される基底状態の高品質な近似に必須である。
量子状態準備(QSP)は、古典的な計算から得られる近似固有状態の生成を可能にするが、量子情報のオラクルとして頻繁に扱われる。
論文 参考訳(メタデータ) (2023-11-06T18:53:50Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
適応微分組立問題集合型アンザッツ変分固有解法(ADAPTVQE)における自己一貫したフィールドアプローチ(SCF)を提案する。
このフレームワークは、短期量子コンピュータ上の化学系の効率的な量子シミュレーションに使用される。
論文 参考訳(メタデータ) (2022-12-21T23:15:17Z) - Phenomenological Theory of Variational Quantum Ground-State Preparation [0.0]
変分量子固有解法(VQE)アルゴリズムは、偏光量子回路を利用するハミルトンの基底状態を作成することを目的としている。
アルゴリズムの成功は学習率などの他のパラメータに大きく依存していることが示される。
ギャップが閉じた場合に使用する対称性向上型シミュレーションプロトコルを提案する。
論文 参考訳(メタデータ) (2022-05-12T18:00:04Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
動的平均場理論(DMFT)は、ハバードモデルの局所グリーン関数をアンダーソン不純物のモデルにマッピングする。
不純物モデルを効率的に解くために、量子およびハイブリッド量子古典アルゴリズムが提案されている。
この研究は、ノイズの多いデジタル量子ハードウェアを用いたMott相転移の最初の計算を提示する。
論文 参考訳(メタデータ) (2021-12-10T17:32:15Z) - Variational Adiabatic Gauge Transformation on real quantum hardware for
effective low-energy Hamiltonians and accurate diagonalization [68.8204255655161]
変分アダバティックゲージ変換(VAGT)を導入する。
VAGTは、現在の量子コンピュータを用いてユニタリ回路の変動パラメータを学習できる非摂動型ハイブリッド量子アルゴリズムである。
VAGTの精度は、RigettiおよびIonQ量子コンピュータ上でのシミュレーションと同様に、トラフ数値シミュレーションで検証される。
論文 参考訳(メタデータ) (2021-11-16T20:50:08Z) - Solving the Hubbard model using density matrix embedding theory and the
variational quantum eigensolver [0.05076419064097732]
密度行列埋め込み理論(DMET)は、ハバードモデルを解くために量子コンピュータ上で実装できる。
埋め込みハミルトニアンの正確な形式を導出し、効率的なアンザッツ回路と測定スキームを構築するためにそれを用いる。
我々は,ハバードモデルパラメータの範囲において,これまでで最大16量子ビットの詳細な数値シミュレーションを行う。
論文 参考訳(メタデータ) (2021-08-19T10:46:58Z) - Computing molecular excited states on a D-Wave quantum annealer [52.5289706853773]
分子系の励起電子状態の計算にD波量子アニールを用いることを実証する。
これらのシミュレーションは、太陽光発電、半導体技術、ナノサイエンスなど、いくつかの分野で重要な役割を果たしている。
論文 参考訳(メタデータ) (2021-07-01T01:02:17Z) - Heisenberg-limited ground state energy estimation for early
fault-tolerant quantum computers [3.7747526957907303]
ハイゼンベルク制限精度スケーリングを用いてハミルトンの基底状態エネルギーを推定する方法を提案する。
提案アルゴリズムは,スペクトル測度の近似累積分布関数も生成する。
論文 参考訳(メタデータ) (2021-02-22T20:21:56Z) - Benchmarking adaptive variational quantum eigensolvers [63.277656713454284]
VQEとADAPT-VQEの精度をベンチマークし、電子基底状態とポテンシャルエネルギー曲線を計算する。
どちらの手法もエネルギーと基底状態の優れた推定値を提供する。
勾配に基づく最適化はより経済的であり、勾配のない類似シミュレーションよりも優れた性能を提供する。
論文 参考訳(メタデータ) (2020-11-02T19:52:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。