論文の概要: From Conformal Predictions to Confidence Regions
- arxiv url: http://arxiv.org/abs/2405.18601v1
- Date: Tue, 28 May 2024 21:33:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 21:43:38.585315
- Title: From Conformal Predictions to Confidence Regions
- Title(参考訳): コンフォーマル予測から信頼領域へ
- Authors: Charles Guille-Escuret, Eugene Ndiaye,
- Abstract要約: モデルパラメータに対する信頼領域を確立するために,モデル出力に共形予測間隔を組み合わせたCCRを導入する。
本稿では,雑音に対する最小限の仮定の下でのカバレッジ保証について述べる。
本手法は, 完全あるいはクロスコンフォーマルなアプローチを含む, 分割共形予測とブラックボックス手法の両方に適用可能である。
- 参考スコア(独自算出の注目度): 1.4272411349249627
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Conformal prediction methodologies have significantly advanced the quantification of uncertainties in predictive models. Yet, the construction of confidence regions for model parameters presents a notable challenge, often necessitating stringent assumptions regarding data distribution or merely providing asymptotic guarantees. We introduce a novel approach termed CCR, which employs a combination of conformal prediction intervals for the model outputs to establish confidence regions for model parameters. We present coverage guarantees under minimal assumptions on noise and that is valid in finite sample regime. Our approach is applicable to both split conformal predictions and black-box methodologies including full or cross-conformal approaches. In the specific case of linear models, the derived confidence region manifests as the feasible set of a Mixed-Integer Linear Program (MILP), facilitating the deduction of confidence intervals for individual parameters and enabling robust optimization. We empirically compare CCR to recent advancements in challenging settings such as with heteroskedastic and non-Gaussian noise.
- Abstract(参考訳): コンフォーマル予測手法は予測モデルにおける不確実性の定量化を著しく進めてきた。
しかし、モデルパラメーターに対する信頼領域の構築は、しばしばデータ分布に関する厳密な仮定を必要とする、あるいは単に漸近的な保証を提供する、顕著な課題を示す。
本稿では,モデルパラメータに対する信頼領域を確立するために,モデル出力に共形予測間隔を組み合わせた新しいアプローチCCRを提案する。
本稿では,雑音に対する最小限の仮定の下でのカバレッジ保証について述べる。
本手法は, 完全あるいはクロスコンフォーマルなアプローチを含む, 分割共形予測とブラックボックス手法の両方に適用可能である。
線形モデルの特定の場合において、導出された信頼領域は混合整数線形プログラム(MILP)の実現可能な集合として現れ、個々のパラメータに対する信頼区間の導出を容易にし、堅牢な最適化を可能にする。
我々はCCRと最近のヘテロスケダス音や非ガウス音といった難易度設定の進歩を実証的に比較した。
関連論文リスト
- Conformal Generative Modeling with Improved Sample Efficiency through Sequential Greedy Filtering [55.15192437680943]
生成モデルは出力に対する厳密な統計的保証を欠いている。
厳密な統計的保証を満たす予測セットを生成する逐次共形予測法を提案する。
このことは、高い確率で予測セットが少なくとも1つの許容可能な(または有効な)例を含むことを保証している。
論文 参考訳(メタデータ) (2024-10-02T15:26:52Z) - Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
本研究では,共形手法の柔軟性と条件分布の推定を組み合わせ,予測セットを生成する手法を開発した。
我々の手法は、条件付きカバレッジの観点から既存の手法よりも一貫して優れています。
論文 参考訳(メタデータ) (2024-07-01T20:44:48Z) - Finite Sample Confidence Regions for Linear Regression Parameters Using
Arbitrary Predictors [1.6860963320038902]
線形モデルのパラメータに対する信頼領域を構築するための新しい手法を任意の予測器からの予測を用いて検討する。
導出された信頼領域は、混合線形プログラミングフレームワーク内の制約としてキャストすることができ、線形目的の最適化を可能にする。
従来の手法とは異なり、信頼領域は空であり、仮説テストに使用できる。
論文 参考訳(メタデータ) (2024-01-27T00:15:48Z) - Conformal Approach To Gaussian Process Surrogate Evaluation With
Coverage Guarantees [47.22930583160043]
適応型クロスコンフォーマル予測区間を構築する手法を提案する。
結果として生じる共形予測区間は、ベイズ的信頼性集合に類似した適応性のレベルを示す。
原子炉の蒸気発生器における閉鎖現象の高コスト・評価シミュレータのサロゲートモデリングの文脈において, 本手法の適用可能性を示す。
論文 参考訳(メタデータ) (2024-01-15T14:45:18Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
確率に基づく推論の原理を再検討し、確率比を用いて妥当な信頼シーケンスを構築することを提案する。
本手法は, 精度の高い問題に特に適している。
提案手法は,オンライン凸最適化への接続に光を当てることにより,推定器の最適シーケンスを確実に選択する方法を示す。
論文 参考訳(メタデータ) (2023-11-08T00:10:21Z) - Multiclass Alignment of Confidence and Certainty for Network Calibration [10.15706847741555]
最近の研究では、ディープニューラルネットワーク(DNN)が過信的な予測を行う傾向があることが示されている。
予測平均信頼度と予測確実性(MACC)の多クラスアライメントとして知られる簡易なプラグアンドプレイ補助損失を特徴とする列車時キャリブレーション法を提案する。
本手法は,領域内および領域外両方のキャリブレーション性能を実現する。
論文 参考訳(メタデータ) (2023-09-06T00:56:24Z) - Towards Better Certified Segmentation via Diffusion Models [62.21617614504225]
セグメンテーションモデルは敵の摂動に弱いため、医療や自動運転といった重要な意思決定システムでの使用を妨げます。
近年,理論的保証を得るためにガウス雑音を入力に加えることにより,セグメント化予測のランダム化が提案されている。
本稿では,ランダムな平滑化と拡散モデルを組み合わせたセグメンテーション予測の問題に対処する。
論文 参考訳(メタデータ) (2023-06-16T16:30:39Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - Efficient Ensemble Model Generation for Uncertainty Estimation with
Bayesian Approximation in Segmentation [74.06904875527556]
アンサンブルセグメンテーションモデルを構築するための汎用的で効率的なセグメンテーションフレームワークを提案する。
提案手法では,層選択法を用いて効率よくアンサンブルモデルを生成することができる。
また,新たな画素単位の不確実性損失を考案し,予測性能を向上する。
論文 参考訳(メタデータ) (2020-05-21T16:08:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。