論文の概要: Comparative Analysis of LSTM, GRU, and Transformer Models for Stock Price Prediction
- arxiv url: http://arxiv.org/abs/2411.05790v1
- Date: Sun, 20 Oct 2024 14:00:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-17 09:32:56.188658
- Title: Comparative Analysis of LSTM, GRU, and Transformer Models for Stock Price Prediction
- Title(参考訳): 株価予測のためのLSTM, GRU, 変圧器モデルの比較分析
- Authors: Jue Xiao, Tingting Deng, Shuochen Bi,
- Abstract要約: 本稿では、AIによる株価トレンド予測を中核研究とする。
2015年から2024年にかけて、有名なTesla車のモデルトレーニングデータセットを作成し、LSTM、GRU、Transformer Modelsと比較した。
その結果,LSTMモデルの精度は94%であった。
- 参考スコア(独自算出の注目度): 0.9217021281095907
- License:
- Abstract: In recent fast-paced financial markets, investors constantly seek ways to gain an edge and make informed decisions. Although achieving perfect accuracy in stock price predictions remains elusive, artificial intelligence (AI) advancements have significantly enhanced our ability to analyze historical data and identify potential trends. This paper takes AI driven stock price trend prediction as the core research, makes a model training data set of famous Tesla cars from 2015 to 2024, and compares LSTM, GRU, and Transformer Models. The analysis is more consistent with the model of stock trend prediction, and the experimental results show that the accuracy of the LSTM model is 94%. These methods ultimately allow investors to make more informed decisions and gain a clearer insight into market behaviors.
- Abstract(参考訳): 最近の急激な金融市場では、投資家は常に利益を得、情報的な決定を下す方法を模索している。
株価予測において完全な精度を達成することはいまだ解明されていないが、人工知能(AI)の進歩により、過去のデータを分析し、潜在的なトレンドを特定する能力が大幅に向上した。
本稿では、AIによる株価トレンド予測を中核研究として捉え、2015年から2024年にかけて有名なTesla車のモデルトレーニングデータセットを作成し、LSTM、GRU、Transformer Modelsと比較する。
その結果,LSTMモデルの精度は94%であった。
これらの手法により、投資家はより情報的な決定をし、市場行動に関するより明確な洞察を得ることができる。
関連論文リスト
- Leveraging Fundamental Analysis for Stock Trend Prediction for Profit [0.0]
本稿では,機械学習モデル,Long Short-Term Memory (LSTM), 1次元畳み込みニューラルネットワーク (1D CNN) およびロジスティック回帰 (LR) を用いて,基本解析に基づく株価トレンドの予測を行う。
我々は、2つの予測タスク、すなわち年次株価差(ASPD)と現在の株価と本質的価値(CSPDIV)の差を定式化するために、主要な金融比率とディスクキャッシュフロー(DCF)モデルを採用する。
この結果、LRモデルはCNNおよびLSTMモデルより優れており、ASPDの平均テスト精度は74.66%、DCSPIVは72.85%であることがわかった。
論文 参考訳(メタデータ) (2024-10-04T20:36:19Z) - An Evaluation of Deep Learning Models for Stock Market Trend Prediction [0.3277163122167433]
本研究では,S&P 500指数とブラジルETF EWZの日時閉値を用いた短期トレンド予測のための先進的なディープラーニングモデルの有効性について検討した。
時系列予測に最適化されたxLSTM適応であるxLSTM-TSモデルを導入する。
テストされたモデルの中で、xLSTM-TSは一貫して他のモデルよりも優れており、例えば、テスト精度72.82%、F1スコア73.16%をEWZの日次データセットで達成している。
論文 参考訳(メタデータ) (2024-08-22T13:58:55Z) - Indian Stock Market Prediction using Augmented Financial Intelligence ML [0.0]
本稿では,Superforecasters予測を付加した機械学習アルゴリズムを用いた価格予測モデルを提案する。
これらのモデルは平均絶対誤差を用いて予測精度を決定する。
主な目標は、予測不可能な変化や株価の変化を予想するスーパープレキャストの特定と予測の追跡である。
論文 参考訳(メタデータ) (2024-07-02T12:58:50Z) - Exploring Sectoral Profitability in the Indian Stock Market Using Deep Learning [0.0]
この研究は、既存の株価予測手法に関する文献に基づいており、機械学習とディープラーニングアプローチへのシフトを強調している。
LSTMモデルでは、NSE、インドに上場している18のセクターで180銘柄の歴史的株価を用いて、将来の価格を予測する。
その結果,株価を正確に予測し,投資決定を下す上でLSTMモデルの有効性が示された。
論文 参考訳(メタデータ) (2024-05-28T17:55:54Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - Joint Latent Topic Discovery and Expectation Modeling for Financial
Markets [45.758436505779386]
金融市場分析のための画期的な枠組みを提示する。
このアプローチは、投資家の期待を共同でモデル化し、潜伏する株価関係を自動的に掘り下げる最初の方法だ。
私たちのモデルは年率10%を超えるリターンを継続的に達成します。
論文 参考訳(メタデータ) (2023-06-01T01:36:51Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
ニュース見出しを用いて,ChatGPTのような大規模言語モデル(LLM)の株価変動を予測する能力について述べる。
我々は,情報容量制約,過小反応,制限対アビタージュ,LLMを組み込んだ理論モデルを構築した。
論文 参考訳(メタデータ) (2023-04-15T19:22:37Z) - Univariate and Multivariate LSTM Model for Short-Term Stock Market
Prediction [1.6114012813668934]
本稿では,インド企業2社の短期株価予測のための2つの異なる入力アプローチを持つLSTMモデルを提案する。
10年間の歴史的データ(2012-2021)を,ヤフー金融のウェブサイトから抽出し,提案手法の分析を行った。
論文 参考訳(メタデータ) (2022-05-08T07:01:12Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
伝統的な時系列計量法は、価格力学を駆動する多層相互作用の真の複雑さを捉えることができないことが多い。
最先端の2次最適化アルゴリズムを採用することで、時間的注意を払ってベイジアン双線形ニューラルネットワークを訓練する。
予測分布を用いて推定パラメータとモデル予測に関連する誤差や不確実性を解析することにより、ベイズモデルと従来のML代替品を徹底的に比較する。
論文 参考訳(メタデータ) (2022-03-07T18:59:54Z) - Stock Price Prediction Under Anomalous Circumstances [81.37657557441649]
本稿では,異常な状況下での株価の変動パターンを捉えることを目的とする。
ARIMAとLSTMのモデルは、シングルストックレベル、業界レベル、一般市場レベルでトレーニングします。
2016年から2020年にかけての100社の株価に基づいて、平均予測精度は98%に達した。
論文 参考訳(メタデータ) (2021-09-14T18:50:38Z) - Deep Stock Predictions [58.720142291102135]
本稿では,Long Short Term Memory (LSTM) ニューラルネットワークを用いてポートフォリオ最適化を行うトレーディング戦略の設計について考察する。
次に、LSTMのトレーニングに使用する損失関数をカスタマイズし、利益を上げる。
カスタマイズされた損失関数を持つLSTMモデルは、ARIMAのような回帰ベースライン上でのトレーニングボットの性能を向上させる。
論文 参考訳(メタデータ) (2020-06-08T23:37:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。