論文の概要: Assessing the role of clinical summarization and patient chart review within communications, medical management, and diagnostics
- arxiv url: http://arxiv.org/abs/2407.16905v1
- Date: Mon, 24 Jun 2024 15:31:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-28 18:19:29.690544
- Title: Assessing the role of clinical summarization and patient chart review within communications, medical management, and diagnostics
- Title(参考訳): コミュニケーション, 医療管理, 診断における臨床要約と患者表の見直しの役割の評価
- Authors: Chanseo Lee, Kimon-Aristotelis Vogt, Sonu Kumar,
- Abstract要約: 本総説では,コミュニケーション,診断,管理における患者チャートレビューの意義と課題について,近年の文献および事例研究について概説する。
また、人工知能を臨床要約タスクに統合するための最近の取り組みや、臨床医の潜在能力に対する変革的な影響についても論じている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Effective summarization of unstructured patient data in electronic health records (EHRs) is crucial for accurate diagnosis and efficient patient care, yet clinicians often struggle with information overload and time constraints. This review dives into recent literature and case studies on both the significant impacts and outstanding issues of patient chart review on communications, diagnostics, and management. It also discusses recent efforts to integrate artificial intelligence (AI) into clinical summarization tasks, and its transformative impact on the clinician's potential, including but not limited to reductions of administrative burden and improved patient-centered care.
- Abstract(参考訳): 電子健康記録(EHR)における非構造化患者データの効果的な要約は、正確な診断と効率的な患者ケアに不可欠であるが、臨床医は情報過負荷と時間制約に苦慮することが多い。
本報告では,コミュニケーション,診断,管理における患者チャートレビューの意義と課題について,近年の文献および事例研究について概説する。
また、人工知能(AI)を臨床要約タスクに統合する最近の取り組みや、管理負担の削減や患者中心型ケアの改善など、臨床医の可能性への変革的影響についても論じている。
関連論文リスト
- Clinical Evaluation of Medical Image Synthesis: A Case Study in Wireless Capsule Endoscopy [63.39037092484374]
本研究は,人工知能(AI)モデルを用いた医用合成データ生成の臨床評価に焦点を当てた。
本論文は,a) 医用専門家による合成画像の体系的評価のためのプロトコルを提示し,b) 高分解能WCE画像合成のための新しい変分オートエンコーダモデルであるTIDE-IIを評価する。
その結果、TIDE-IIは臨床的に関連性のあるWCE画像を生成し、データの不足に対処し、診断ツールの強化に役立つことがわかった。
論文 参考訳(メタデータ) (2024-10-31T19:48:50Z) - VIEWER: an extensible visual analytics framework for enhancing mental healthcare [2.52780220954141]
VIEWERはオープンソースのツールキットで、分散自然言語処理とインタラクティブな可視化技術を利用している。
VIEWERは、医療提供のさまざまな側面におけるデータアクセシビリティと表現を改善するために開発された。
論文 参考訳(メタデータ) (2024-10-25T14:01:13Z) - A Two-Stage Proactive Dialogue Generator for Efficient Clinical Information Collection Using Large Language Model [0.6926413609535759]
患者情報収集作業を自動化する診断対話システムを提案する。
医療史と会話のロジックを活用することで、会話エージェントは複数回にわたる臨床クエリを作成できる。
実世界の医療会話データセットを用いた実験結果から,本モデルが実際の医師の会話スタイルを模倣した臨床クエリを生成できることが示唆された。
論文 参考訳(メタデータ) (2024-10-02T19:32:11Z) - Intelligent Clinical Documentation: Harnessing Generative AI for Patient-Centric Clinical Note Generation [0.0]
本稿では,クリニカルドキュメンテーションプロセスの合理化のための生成AI(Artificial Intelligence)の可能性について検討する。
本稿では,自然言語処理 (NLP) と自動音声認識 (ASR) 技術を用いて患者と臨床の相互作用を転写するケーススタディを提案する。
この研究は、時間節約、ドキュメント品質の改善、患者中心のケアの改善など、このアプローチの利点を強調している。
論文 参考訳(メタデータ) (2024-05-28T16:43:41Z) - Enhancing Clinical Efficiency through LLM: Discharge Note Generation for Cardiac Patients [1.379398224469229]
本研究は、特に心臓病患者において、手動で放電ノートを作成する際の非効率性と不正確性について論じる。
本研究は,大規模言語モデル(LLM)の文書化プロセスの向上能力を評価する。
評価された様々なモデルの中で、Mistral-7Bは正確に放電音を発生させることで識別された。
論文 参考訳(メタデータ) (2024-04-08T01:55:28Z) - Automated Scoring of Clinical Patient Notes using Advanced NLP and
Pseudo Labeling [2.711804338865226]
本研究では,最先端自然言語処理(NLP)技術を活用したアプローチを提案する。
提案手法は効率と有効性を向上し,性能を損なうことなくトレーニング時間を著しく短縮する。
論文 参考訳(メタデータ) (2024-01-18T05:17:18Z) - Impact of Large Language Model Assistance on Patients Reading Clinical Notes: A Mixed-Methods Study [46.5728291706842]
臨床記録をより読みやすくするために,大言語モデル(LLM)を用いた患者対応ツールを開発した。
乳がんの既往歴のある患者から寄贈された臨床記録と臨床医からの合成ノートを用いて,本ツールの試験を行った。
論文 参考訳(メタデータ) (2024-01-17T23:14:52Z) - SPeC: A Soft Prompt-Based Calibration on Performance Variability of
Large Language Model in Clinical Notes Summarization [50.01382938451978]
本稿では,ソフトプロンプトを用いたモデルに依存しないパイプラインを導入し,確率に基づく要約の利点を保ちながら分散を減少させる。
実験結果から,本手法は性能を向上するだけでなく,様々な言語モデルの分散を効果的に抑制することが明らかとなった。
論文 参考訳(メタデータ) (2023-03-23T04:47:46Z) - Enriching Unsupervised User Embedding via Medical Concepts [51.17532619610099]
教師なしのユーザ埋め込みは、患者を人間の監督なしに、固定長のベクターにエンコードすることを目的としている。
臨床ノートから抽出された医療概念は、患者とその臨床カテゴリ間の豊富な関係を含んでいる。
本稿では,2つの臨床コーパスからテキスト文書と医療概念を共同で活用する,非教師なしユーザ埋め込みを提案する。
論文 参考訳(メタデータ) (2022-03-20T18:54:05Z) - Predicting Patient Readmission Risk from Medical Text via Knowledge
Graph Enhanced Multiview Graph Convolution [67.72545656557858]
本稿では,電子健康記録の医用テキストを予測に用いる新しい手法を提案する。
外部知識グラフによって強化された多視点グラフを有する患者の退院サマリーを表現している。
実験により,本手法の有効性が証明され,最先端の性能が得られた。
論文 参考訳(メタデータ) (2021-12-19T01:45:57Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。