Time Series Imputation with Multivariate Radial Basis Function Neural Network
- URL: http://arxiv.org/abs/2407.17040v2
- Date: Wed, 31 Jul 2024 05:39:34 GMT
- Title: Time Series Imputation with Multivariate Radial Basis Function Neural Network
- Authors: Chanyoung Jung, Yun Jang,
- Abstract summary: We propose a time series imputation model based on the Radial Basis Functions Neural Network (RBFNN)
Our imputation model learns local information from timestamps to create a continuous function.
We propose an extension called the Missing Value Imputation Recurrent Neural Network with Continuous Function (MIRNN-CF) using the continuous function generated by MIM-RBFNN.
- Score: 1.6804613362826175
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Researchers have been persistently working to address the issue of missing values in time series data. Numerous models have been proposed, striving to estimate the distribution of the data. The Radial Basis Functions Neural Network (RBFNN) has recently exhibited exceptional performance in estimating data distribution. In this paper, we propose a time series imputation model based on RBFNN. Our imputation model learns local information from timestamps to create a continuous function. Additionally, we incorporate time gaps to facilitate learning information considering the missing terms of missing values. We name this model the Missing Imputation Multivariate RBFNN (MIM-RBFNN). However, MIM-RBFNN relies on a local information-based learning approach, which presents difficulties in utilizing temporal information. Therefore, we propose an extension called the Missing Value Imputation Recurrent Neural Network with Continuous Function (MIRNN-CF) using the continuous function generated by MIM-RBFNN. We evaluate the performance using two real-world datasets with non-random missing and random missing patterns, and conduct an ablation study comparing MIM-RBFNN and MIRNN-CF.
Related papers
- Modelling Networked Dynamical System by Temporal Graph Neural ODE with Irregularly Partial Observed Time-series Data [6.207073888171358]
We propose a method embedding Graph Neural ODE with reliability and time-aware mechanism to reconstruct the dynamics.
The proposed method has been validated in experiments of different networked dynamical systems.
arXiv Detail & Related papers (2024-11-29T14:10:16Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
Continuous time autoregressive recurrent neural networks (CTRNNs) are a deep learning model that account for irregular observations.
We demonstrate the application of these models to probabilistic forecasting of blood glucose in a critical care setting.
arXiv Detail & Related papers (2023-04-14T09:39:06Z) - Online Evolutionary Neural Architecture Search for Multivariate
Non-Stationary Time Series Forecasting [72.89994745876086]
This work presents the Online Neuro-Evolution-based Neural Architecture Search (ONE-NAS) algorithm.
ONE-NAS is a novel neural architecture search method capable of automatically designing and dynamically training recurrent neural networks (RNNs) for online forecasting tasks.
Results demonstrate that ONE-NAS outperforms traditional statistical time series forecasting methods.
arXiv Detail & Related papers (2023-02-20T22:25:47Z) - STING: Self-attention based Time-series Imputation Networks using GAN [4.052758394413726]
STING (Self-attention based Time-series Imputation Networks using GAN) is proposed.
We take advantage of generative adversarial networks and bidirectional recurrent neural networks to learn latent representations of the time series.
Experimental results on three real-world datasets demonstrate that STING outperforms the existing state-of-the-art methods in terms of imputation accuracy.
arXiv Detail & Related papers (2022-09-22T06:06:56Z) - Task-Synchronized Recurrent Neural Networks [0.0]
Recurrent Neural Networks (RNNs) traditionally involve ignoring the fact, feeding the time differences as additional inputs, or resampling the data.
We propose an elegant straightforward alternative approach where instead the RNN is in effect resampled in time to match the time of the data or the task at hand.
We confirm empirically that our models can effectively compensate for the time-non-uniformity of the data and demonstrate that they compare favorably to data resampling, classical RNN methods, and alternative RNN models.
arXiv Detail & Related papers (2022-04-11T15:27:40Z) - Recurrence-in-Recurrence Networks for Video Deblurring [58.49075799159015]
State-of-the-art video deblurring methods often adopt recurrent neural networks to model the temporal dependency between the frames.
In this paper, we propose recurrence-in-recurrence network architecture to cope with the limitations of short-ranged memory.
arXiv Detail & Related papers (2022-03-12T11:58:13Z) - Networked Time Series Prediction with Incomplete Data [59.45358694862176]
We propose NETS-ImpGAN, a novel deep learning framework that can be trained on incomplete data with missing values in both history and future.
We conduct extensive experiments on three real-world datasets under different missing patterns and missing rates.
arXiv Detail & Related papers (2021-10-05T18:20:42Z) - Multivariate Time Series Imputation by Graph Neural Networks [13.308026049048717]
We introduce a graph neural network architecture, named GRIL, which aims at reconstructing missing data in different channels of a multivariate time series.
Preliminary results show that our model outperforms state-of-the-art methods in the imputation task on relevant benchmarks.
arXiv Detail & Related papers (2021-07-31T17:47:10Z) - CARRNN: A Continuous Autoregressive Recurrent Neural Network for Deep
Representation Learning from Sporadic Temporal Data [1.8352113484137622]
In this paper, a novel deep learning-based model is developed for modeling multiple temporal features in sporadic data.
The proposed model, called CARRNN, uses a generalized discrete-time autoregressive model that is trainable end-to-end using neural networks modulated by time lags.
It is applied to multivariate time-series regression tasks using data provided for Alzheimer's disease progression modeling and intensive care unit (ICU) mortality rate prediction.
arXiv Detail & Related papers (2021-04-08T12:43:44Z) - Handling Missing Observations with an RNN-based Prediction-Update Cycle [10.478312054103975]
In tasks such as tracking, time-series data inevitably carry missing observations.
This paper introduces an RNN-based approach that provides a full temporal filtering cycle for motion state estimation.
arXiv Detail & Related papers (2021-03-22T11:55:10Z) - Frequentist Uncertainty in Recurrent Neural Networks via Blockwise
Influence Functions [121.10450359856242]
Recurrent neural networks (RNNs) are instrumental in modelling sequential and time-series data.
Existing approaches for uncertainty quantification in RNNs are based predominantly on Bayesian methods.
We develop a frequentist alternative that: (a) does not interfere with model training or compromise its accuracy, (b) applies to any RNN architecture, and (c) provides theoretical coverage guarantees on the estimated uncertainty intervals.
arXiv Detail & Related papers (2020-06-20T22:45:32Z) - Learned Factor Graphs for Inference from Stationary Time Sequences [107.63351413549992]
We propose a framework that combines model-based algorithms and data-driven ML tools for stationary time sequences.
neural networks are developed to separately learn specific components of a factor graph describing the distribution of the time sequence.
We present an inference algorithm based on learned stationary factor graphs, which learns to implement the sum-product scheme from labeled data.
arXiv Detail & Related papers (2020-06-05T07:06:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.