Establishing Truly Causal Relationship Between Whole Slide Image Predictions and Diagnostic Evidence Subregions in Deep Learning
- URL: http://arxiv.org/abs/2407.17157v1
- Date: Wed, 24 Jul 2024 11:00:08 GMT
- Title: Establishing Truly Causal Relationship Between Whole Slide Image Predictions and Diagnostic Evidence Subregions in Deep Learning
- Authors: Tianhang Nan, Yong Ding, Hao Quan, Deliang Li, Mingchen Zou, Xiaoyu Cui,
- Abstract summary: Multiple Instance Learning (MIL) has gained significant attention due to its ability to be trained using only slide-level diagnostic labels.
Previous MIL researches have primarily focused on enhancing feature aggregators for globally analyzing WSIs, but overlook a causal relationship in diagnosis.
We propose Causal Inference Multiple Instance Learning (CI-MIL) to establish the truly causal relationship between model predictions and diagnostic evidence regions.
- Score: 3.783430751544095
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In the field of deep learning-driven Whole Slide Image (WSI) classification, Multiple Instance Learning (MIL) has gained significant attention due to its ability to be trained using only slide-level diagnostic labels. Previous MIL researches have primarily focused on enhancing feature aggregators for globally analyzing WSIs, but overlook a causal relationship in diagnosis: model's prediction should ideally stem solely from regions of the image that contain diagnostic evidence (such as tumor cells), which usually occupy relatively small areas. To address this limitation and establish the truly causal relationship between model predictions and diagnostic evidence regions, we propose Causal Inference Multiple Instance Learning (CI-MIL). CI-MIL integrates feature distillation with a novel patch decorrelation mechanism, employing a two-stage causal inference approach to distill and process patches with high diagnostic value. Initially, CI-MIL leverages feature distillation to identify patches likely containing tumor cells and extracts their corresponding feature representations. These features are then mapped to random Fourier feature space, where a learnable weighting scheme is employed to minimize inter-feature correlations, effectively reducing redundancy from homogenous patches and mitigating data bias. These processes strengthen the causal relationship between model predictions and diagnostically relevant regions, making the prediction more direct and reliable. Experimental results demonstrate that CI-MIL outperforms state-of-the-art methods. Additionally, CI-MIL exhibits superior interpretability, as its selected regions demonstrate high consistency with ground truth annotations, promising more reliable diagnostic assistance for pathologists.
Related papers
- UGPL: Uncertainty-Guided Progressive Learning for Evidence-Based Classification in Computed Tomography [0.0]
Current approaches typically process images uniformly, limiting their ability to detect localized abnormalities.<n>We introduce UGPL, an uncertainty-guided progressive learning framework that performs a global-to-local analysis.<n> Experiments across three CT datasets demonstrate that UGPL consistently outperforms state-of-the-art methods.
arXiv Detail & Related papers (2025-07-18T17:30:56Z) - CROCODILE: Causality aids RObustness via COntrastive DIsentangled LEarning [8.975676404678374]
We introduce our CROCODILE framework, showing how tools from causality can foster a model's robustness to domain shift.
We apply our method to multi-label lung disease classification from CXRs, utilizing over 750000 images.
arXiv Detail & Related papers (2024-08-09T09:08:06Z) - Dimensionality Reduction and Nearest Neighbors for Improving Out-of-Distribution Detection in Medical Image Segmentation [1.2873975765521795]
This work applied the Mahalanobis distance (MD) post hoc to the bottleneck features of four Swin UNETR and nnU-net models that segmented the liver.
Images the models failed on were detected with high performance and minimal computational load.
arXiv Detail & Related papers (2024-08-05T18:24:48Z) - Distilling High Diagnostic Value Patches for Whole Slide Image Classification Using Attention Mechanism [11.920941310806558]
Multiple Instance Learning (MIL) has garnered widespread attention in the field of Whole Slide Image (WSI) classification.
A drawback of bag-level MIL methods is the incorporation of more redundant patches, leading to interference.
We developed an attention-based feature distillation multi-instance learning (AFD-MIL) approach to extract patches with high diagnostic value.
arXiv Detail & Related papers (2024-07-29T09:14:21Z) - AnoDODE: Anomaly Detection with Diffusion ODE [0.0]
Anomaly detection is the process of identifying atypical data samples that significantly deviate from the majority of the dataset.
We propose a new anomaly detection method based on diffusion ODEs by estimating the density of features extracted from medical images.
Our proposed method not only identifie anomalies but also provides interpretability at both the image and pixel levels.
arXiv Detail & Related papers (2023-10-10T08:44:47Z) - Active Learning Enhances Classification of Histopathology Whole Slide
Images with Attention-based Multiple Instance Learning [48.02011627390706]
We train an attention-based MIL and calculate a confidence metric for every image in the dataset to select the most uncertain WSIs for expert annotation.
With a novel attention guiding loss, this leads to an accuracy boost of the trained models with few regions annotated for each class.
It may in the future serve as an important contribution to train MIL models in the clinically relevant context of cancer classification in histopathology.
arXiv Detail & Related papers (2023-03-02T15:18:58Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
We propose a new semi-supervised adversarial method called Patch Confidence Adrial Training (PCA) for medical image segmentation.
PCA learns the pixel structure and context information in each patch to get enough gradient feedback, which aids the discriminator in convergent to an optimal state.
Our method outperforms the state-of-the-art semi-supervised methods, which demonstrates its effectiveness for medical image segmentation.
arXiv Detail & Related papers (2022-07-24T07:45:47Z) - CNN Filter Learning from Drawn Markers for the Detection of Suggestive
Signs of COVID-19 in CT Images [58.720142291102135]
We propose a method that does not require either large annotated datasets or backpropagation to estimate the filters of a convolutional neural network (CNN)
For a few CT images, the user draws markers at representative normal and abnormal regions.
The method generates a feature extractor composed of a sequence of convolutional layers, whose kernels are specialized in enhancing regions similar to the marked ones.
arXiv Detail & Related papers (2021-11-16T15:03:42Z) - Label Cleaning Multiple Instance Learning: Refining Coarse Annotations
on Single Whole-Slide Images [83.7047542725469]
Annotating cancerous regions in whole-slide images (WSIs) of pathology samples plays a critical role in clinical diagnosis, biomedical research, and machine learning algorithms development.
We present a method, named Label Cleaning Multiple Instance Learning (LC-MIL), to refine coarse annotations on a single WSI without the need of external training data.
Our experiments on a heterogeneous WSI set with breast cancer lymph node metastasis, liver cancer, and colorectal cancer samples show that LC-MIL significantly refines the coarse annotations, outperforming the state-of-the-art alternatives, even while learning from a single slide.
arXiv Detail & Related papers (2021-09-22T15:06:06Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Potential Features of ICU Admission in X-ray Images of COVID-19 Patients [8.83608410540057]
This paper presents an original methodology for extracting semantic features that correlate to severity from a data set with patient ICU admission labels.
The methodology employs a neural network trained to recognise lung pathologies to extract the semantic features.
The method has shown to be capable of selecting images for the learned features, which could translate some information about their common locations in the lung.
arXiv Detail & Related papers (2020-09-26T13:48:39Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.