論文の概要: Trans2Unet: Neural fusion for Nuclei Semantic Segmentation
- arxiv url: http://arxiv.org/abs/2407.17181v1
- Date: Wed, 24 Jul 2024 11:32:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-25 14:04:14.562630
- Title: Trans2Unet: Neural fusion for Nuclei Semantic Segmentation
- Title(参考訳): Trans2Unet: Nuclei Semantic Segmentation のためのニューラルフュージョン
- Authors: Dinh-Phu Tran, Quoc-Anh Nguyen, Van-Truong Pham, Thi-Thao Tran,
- Abstract要約: 核分割のためのUnetとTransUnetネットワークを組み合わせた2分岐アーキテクチャを提案する。
アーキテクチャにおけるビジョントランスフォーマー(ViT)により、TransUnetは医療画像セグメンテーションタスクの強力なエンコーダとして機能する。
2018 Data Science Bowlベンチマークの実験結果は、提案されたアーキテクチャの有効性と性能を示している。
- 参考スコア(独自算出の注目度): 2.054923902435976
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Nuclei segmentation, despite its fundamental role in histopathological image analysis, is still a challenge work. The main challenge of this task is the existence of overlapping areas, which makes separating independent nuclei more complicated. In this paper, we propose a new two-branch architecture by combining the Unet and TransUnet networks for nuclei segmentation task. In the proposed architecture, namely Trans2Unet, the input image is first sent into the Unet branch whose the last convolution layer is removed. This branch makes the network combine features from different spatial regions of the input image and localizes more precisely the regions of interest. The input image is also fed into the second branch. In the second branch, which is called TransUnet branch, the input image will be divided into patches of images. With Vision transformer (ViT) in architecture, TransUnet can serve as a powerful encoder for medical image segmentation tasks and enhance image details by recovering localized spatial information. To boost up Trans2Unet efficiency and performance, we proposed to infuse TransUnet with a computational-efficient variation called "Waterfall" Atrous Spatial Pooling with Skip Connection (WASP-KC) module, which is inspired by the "Waterfall" Atrous Spatial Pooling (WASP) module. Experiment results on the 2018 Data Science Bowl benchmark show the effectiveness and performance of the proposed architecture while compared with previous segmentation models.
- Abstract(参考訳): 病理組織学的画像解析の基本的な役割にもかかわらず、核分割は依然として課題である。
この課題の主な課題は、独立した核の分離をより複雑にする重なり合う領域の存在である。
本稿では,UnetネットワークとTransUnetネットワークを組み合わせた2分岐アーキテクチャを提案する。
提案したアーキテクチャ、すなわちTrans2Unetでは、入力画像が最後の畳み込み層を除去したUnetブランチに最初に送信される。
このブランチは、入力画像の異なる空間領域の特徴を結合させ、より正確に関心領域をローカライズする。
入力画像も第2ブランチに入力される。
TransUnetブランチと呼ばれる第2のブランチでは、入力イメージはイメージのパッチに分割される。
アーキテクチャにおけるビジョントランスフォーマー(ViT)により、TransUnetは、医療画像セグメンテーションタスクのための強力なエンコーダとして機能し、局所化された空間情報を復元することで、画像の詳細性を高めることができる。
そこで我々は,Trans2Unetの効率向上と性能向上のために,Waterfall (Waterfall) Atrous Spatial Pooling with Skip Connection (WASP-KC) モジュールにインスパイアされたTrans2Unetに,Waterfall (Waterfall) Atrous Space Pooling (WASP) モジュールと呼ばれる計算効率のばらつきを注入することを提案した。
2018 Data Science Bowlベンチマークの実験結果は、従来のセグメンテーションモデルと比較しながら、提案アーキテクチャの有効性と性能を示している。
関連論文リスト
- TransResNet: Integrating the Strengths of ViTs and CNNs for High Resolution Medical Image Segmentation via Feature Grafting [6.987177704136503]
医用画像領域で高解像度画像が好ましいのは、基礎となる方法の診断能力を大幅に向上させるためである。
医用画像セグメンテーションのための既存のディープラーニング技術のほとんどは、空間次元が小さい入力画像に最適化されており、高解像度画像では不十分である。
我々はTransResNetという並列処理アーキテクチャを提案し、TransformerとCNNを並列的に組み合わせ、マルチ解像度画像から特徴を独立して抽出する。
論文 参考訳(メタデータ) (2024-10-01T18:22:34Z) - DDU-Net: A Domain Decomposition-based CNN for High-Resolution Image Segmentation on Multiple GPUs [46.873264197900916]
ドメイン分解に基づくU-Netアーキテクチャを導入し、入力イメージを重複しないパッチに分割する。
空間コンテキストの理解を高めるために、パッチ間情報交換を容易にするための通信ネットワークが追加される。
その結果、この手法は、パッチ間通信のない同一ネットワークと比較して、IoU(Universal over Union)スコアよりも2~3,%高い交点を達成できることが判明した。
論文 参考訳(メタデータ) (2024-07-31T01:07:21Z) - TransY-Net:Learning Fully Transformer Networks for Change Detection of
Remote Sensing Images [64.63004710817239]
リモートセンシング画像CDのためのトランスフォーマーベース学習フレームワークTransY-Netを提案する。
グローバルな視点からの特徴抽出を改善し、ピラミッド方式で多段階の視覚的特徴を組み合わせる。
提案手法は,4つの光学式および2つのSAR画像CDベンチマーク上での最先端性能を実現する。
論文 参考訳(メタデータ) (2023-10-22T07:42:19Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
半教師付きバイオメディカルイメージセグメンテーションのための自己教師付き補正学習パラダイムを提案する。
共有エンコーダと2つの独立デコーダを含むデュアルタスクネットワークを設計する。
異なるタスクのための3つの医用画像分割データセットの実験により,本手法の優れた性能が示された。
論文 参考訳(メタデータ) (2023-01-12T08:19:46Z) - EAA-Net: Rethinking the Autoencoder Architecture with Intra-class
Features for Medical Image Segmentation [4.777011444412729]
We propose a light-weight end-to-end segmentation framework based on multi-task learning, called Edge Attention autoencoder Network (EAA-Net)。
提案手法は,クラス間特徴の抽出にセグメンテーションネットワークを利用するだけでなく,フォアグラウンド内でのクラス内特徴の抽出にも再構成ネットワークを適用する。
実験結果から,医用画像分割作業において,本手法が良好に機能することが確認された。
論文 参考訳(メタデータ) (2022-08-19T07:42:55Z) - Occlusion-Aware Instance Segmentation via BiLayer Network Architectures [73.45922226843435]
本稿では,2層畳み込みネットワーク(BCNet)を提案する。このネットワークでは,トップ層がオブジェクト(オブオーバ)を検出し,ボトム層が部分的にオブオーバドされたインスタンス(オブオーバド)を推測する。
一般的な畳み込みネットワーク設計,すなわちFCN(Fully Convolutional Network)とGCN(Graph Convolutional Network)を用いた2層構造の有効性について検討する。
論文 参考訳(メタデータ) (2022-08-08T21:39:26Z) - Crosslink-Net: Double-branch Encoder Segmentation Network via Fusing
Vertical and Horizontal Convolutions [58.71117402626524]
医用画像分割のための新しいダブルブランチエンコーダアーキテクチャを提案する。
1)正方形畳み込みカーネルによる特徴の識別をさらに改善する必要があるため,非正方形および水平畳み込みカーネルの利用を提案する。
実験では,4つのデータセット上でのモデルの有効性を検証した。
論文 参考訳(メタデータ) (2021-07-24T02:58:32Z) - TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation [9.266588373318688]
低レベルディテールのローカリゼーション能力を失うことなく、グローバルコンテキストのモデリングにおける効率性を改善する問題を検討する。
TransFuse、並列スタイルでトランスフォーマーとCNNを組み合わせた新しい2ブランチアーキテクチャが提案されています。
TransFuseでは、グローバル依存性と低レベルの空間詳細の両方を、はるかに浅い方法で効率的にキャプチャできます。
論文 参考訳(メタデータ) (2021-02-16T08:09:45Z) - TransUNet: Transformers Make Strong Encoders for Medical Image
Segmentation [78.01570371790669]
医用画像のセグメンテーションは医療システムの開発に必須の前提条件である。
様々な医療画像セグメンテーションタスクにおいて、U-Netとして知られるu字型アーキテクチャがデファクトスタンダードとなっている。
医用画像セグメンテーションの強力な代替手段として,トランスフォーマーとU-Netの両方を有効活用するTransUNetを提案する。
論文 参考訳(メタデータ) (2021-02-08T16:10:50Z) - Multi-level Context Gating of Embedded Collective Knowledge for Medical
Image Segmentation [32.96604621259756]
医用画像分割のためのU-Netの拡張を提案する。
U-Net, Squeeze and Excitation (SE) block, bi-directional ConvLSTM (BConvLSTM), and the mechanism of dense convolutions。
提案モデルは6つのデータセットで評価される。
論文 参考訳(メタデータ) (2020-03-10T12:29:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。