論文の概要: Unified Prediction Model for Employability in Indian Higher Education System
- arxiv url: http://arxiv.org/abs/2407.17591v1
- Date: Wed, 5 Jun 2024 06:23:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-05 01:35:56.043036
- Title: Unified Prediction Model for Employability in Indian Higher Education System
- Title(参考訳): インド高等教育システムにおける雇用可能性の統一予測モデル
- Authors: Pooja Thakar, Anil Mehta, Manisha,
- Abstract要約: 本研究は,学生の就学率の予測に関して,インド教育制度に有意な差がないことを統計的に検証し,証明するものである。
モデルは、インドのシナリオにおける学生の雇用可能性予測のための一般化されたソリューションを提供する。
- 参考スコア(独自算出の注目度): 1.4610685586329806
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Educational Data Mining has become extremely popular among researchers in last decade. Prior effort in this area was only directed towards prediction of academic performance of a student. Very less number of researches are directed towards predicting employability of a student i.e. prediction of students performance in campus placements at an early stage of enrollment. Furthermore, existing researches on students employability prediction are not universal in approach and is either based upon only one type of course or University/Institute. Henceforth, is not scalable from one context to another. With the necessity of unification, data of professional technical courses namely Bachelor in Engineering/Technology and Masters in Computer Applications students have been collected from 17 states of India. To deal with such a data, a unified predictive model has been developed and applied on 17 states datasets. The research done in this paper proves that model has universal application and can be applied to various states and institutes pan India with different cultural background and course structure. This paper also explores and proves statistically that there is no significant difference in Indian Education System with respect to states as far as prediction of employability of students is concerned. Model provides a generalized solution for student employability prediction in Indian Scenario.
- Abstract(参考訳): 教育データマイニングは、過去10年間で研究者の間で非常に人気がある。
この領域における以前の取り組みは、学生の学業成績の予測にのみ向けられていた。
大学構内における学生の就学率の予測は, 学生の就学初期における就学率の予測に向け, 学生の就学率の予測に向けられた研究が極めて少ない。
さらに、既存の学生雇用予測の研究は、アプローチにおいて普遍的ではなく、1つのコースまたは大学/機関のみに基づいている。
そのため、あるコンテキストから別のコンテキストへ拡張性がない。
統一の必要性から、Bchelor in Engineering/Technology and Masters in Computer Applicationsという専門技術コースのデータがインド17州から収集されている。
このようなデータを扱うために、17の状態データセットに統一的な予測モデルが開発され、適用されている。
本研究は, モデルが普遍的に適用可能であることを証明し, 異なる文化的背景とコース構造を持つインドパン・インディアの様々な州や機関に適用可能であることを実証する。
また,本論文は,学生の就学率の予測に関して,国家に対するインド教育制度に有意な差がないことを統計的に調査し,証明している。
モデルは、インドのシナリオにおける学生雇用率予測のための一般化されたソリューションを提供する。
関連論文リスト
- Beyond human subjectivity and error: a novel AI grading system [67.410870290301]
オープンエンドの質問の格付けは、教育における高い努力と高いインパクトの課題である。
AI技術の最近のブレークスルーは、このような自動化を促進するかもしれないが、大規模に実証されていない。
本稿では,新しい自動短解階調システム(ASAG)を提案する。
論文 参考訳(メタデータ) (2024-05-07T13:49:59Z) - Temporal and Between-Group Variability in College Dropout Prediction [0.0]
本研究では,機械学習モデルの寄与要因と予測性能を体系的に評価する。
最終年度末の降雨予測は,ランダムフォレストモデルによる入園時よりも20%高い値を示した。
学生集団間の多様性に関して、大学GPAは、伝統的に不利な背景を持つ学生にとって、仲間よりも予測的価値が高い。
論文 参考訳(メタデータ) (2024-01-12T10:43:55Z) - AGIEval: A Human-Centric Benchmark for Evaluating Foundation Models [122.63704560157909]
我々は,人間中心の標準化試験の文脈で基礎モデルを評価するために設計された新しいベンチマークであるAGIEvalを紹介する。
GPT-4, ChatGPT, Text-Davinci-003 など,最先端基盤モデルの評価を行った。
GPT-4はSAT、LSAT、数学の競争で平均的な人事成績を上回り、SAT Mathテストでは95%の精度で、中国国立大学入試では92.5%の精度で合格している。
論文 参考訳(メタデータ) (2023-04-13T09:39:30Z) - ASPEST: Bridging the Gap Between Active Learning and Selective
Prediction [56.001808843574395]
選択予測は、不確実な場合の予測を棄却する信頼性のあるモデルを学ぶことを目的としている。
アクティブラーニングは、最も有意義な例を問うことで、ラベリングの全体、すなわち人間の依存度を下げることを目的としている。
本研究では,移動対象領域からより情報のあるサンプルを検索することを目的とした,新たな学習パラダイムである能動的選択予測を導入する。
論文 参考訳(メタデータ) (2023-04-07T23:51:07Z) - Are Models Trained on Indian Legal Data Fair? [20.162205920441895]
法律分野におけるインドの観点からの公正性に関する最初の調査を提示する。
本研究では、保釈予測タスクのために訓練された決定木モデルにおいて、ヒンドゥー教とムスリムに関連する入力特徴間の全体的な公平性格差が0.237であることを示す。
論文 参考訳(メタデータ) (2023-03-13T16:20:33Z) - Process-BERT: A Framework for Representation Learning on Educational
Process Data [68.8204255655161]
本稿では,教育プロセスデータの表現を学習するためのフレームワークを提案する。
我々のフレームワークは、BERT型の目的を用いて、シーケンシャルなプロセスデータから表現を学習する事前学習ステップで構成されています。
当社のフレームワークは,2019年国のレポートカードデータマイニングコンペティションデータセットに適用しています。
論文 参考訳(メタデータ) (2022-04-28T16:07:28Z) - Prediction of Students performance with Artificial Neural Network using
Demographic Traits [2.7636476571082373]
本研究は, ニュートラルネットワークを用いた学生の成績予測システムを開発することを目的とする。
モデルは入力として選択された変数に基づいて開発された。
精度は92.3%を超え、ニューラルネットワークの有効性を示した。
論文 参考訳(メタデータ) (2021-08-08T11:46:41Z) - A Survey of Knowledge Tracing: Models, Variants, and Applications [70.69281873057619]
知識追跡は、学生の行動データ分析の基本的なタスクの1つである。
我々は、異なる技術経路を持つ3種類の基本KTモデルを示す。
この急速に成長する分野における今後の研究の方向性について論じる。
論文 参考訳(メタデータ) (2021-05-06T13:05:55Z) - Adversarial Generative Grammars for Human Activity Prediction [141.43526239537502]
将来予測のための逆生成文法モデルを提案する。
私たちの文法は、データ分散から生産ルールを学習できるように設計されています。
推論中に複数の生産ルールを選択することができると、予測される結果が異なる。
論文 参考訳(メタデータ) (2020-08-11T17:47:53Z) - Academic Performance Estimation with Attention-based Graph Convolutional
Networks [17.985752744098267]
学生の過去のデータから、学生のパフォーマンス予測の課題は、将来のコースにおける生徒の成績を予測することである。
学生のパフォーマンス予測の伝統的な方法は、通常、複数のコース間の基礎となる関係を無視する。
本稿では,学生のパフォーマンス予測のための新しい注目型グラフ畳み込みネットワークモデルを提案する。
論文 参考訳(メタデータ) (2019-12-26T23:11:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。