論文の概要: PICA: A Data-driven Synthesis of Peer Instruction and Continuous Assessment
- arxiv url: http://arxiv.org/abs/2407.17633v1
- Date: Wed, 24 Jul 2024 20:50:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-26 15:57:05.130866
- Title: PICA: A Data-driven Synthesis of Peer Instruction and Continuous Assessment
- Title(参考訳): PICA: ピアインストラクションと継続的アセスメントのためのデータ駆動型合成
- Authors: Steve Geinitz,
- Abstract要約: ここでは、PIとCAを組み合わせて、学生をペアにして、CAタスクで協力するPIセッションを行う。
このデータ駆動型協調学習の動機は、学生の学習、コミュニケーション、エンゲージメントを改善することである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Peer Instruction (PI) and Continuous Assessment(CA) are two distinct educational techniques with extensive research demonstrating their effectiveness. The work herein combines PI and CA in a deliberate and novel manner to pair students together for a PI session in which they collaborate on a CA task. The data used to inform the pairing method is restricted to the most previous CA task students completed independently. The motivation for this data-driven collaborative learning is to improve student learning, communication, and engagement. Quantitative results from an investigation of the method show improved assessment scores on the PI CA tasks, although evidence of a positive effect on subsequent individual CA tasks was not statistically significant as anticipated. However, student perceptions were positive, engagement was high, and students interacted with a broader set of peers than is typical. These qualitative observations, together with extant research on the general benefits of improving student engagement and communication (e.g. improved sense of belonging, increased social capital, etc.), render the method worthy for further research into building and evaluating small student learning communities using student assessment data.
- Abstract(参考訳): Peer Instruction (PI) とContinuous Assessment (CA) は2つの異なる教育手法であり、その効果を実証している。
ここでは、PIとCAを組み合わせて、学生をペアにして、CAタスクで協力するPIセッションを行う。
ペアリング手法を通知するために使用されるデータは、独立して完了した最も古いCAタスク学生に限られる。
このデータ駆動型協調学習の動機は、学生の学習、コミュニケーション、エンゲージメントを改善することである。
検討の結果, PICAタスクに対する評価スコアは改善したが, 個人CAタスクに対する肯定的な効果の証拠は, 期待したほど統計的に有意ではなかった。
しかし,学生の認知は肯定的であり,エンゲージメントも高かった。
これらの質的な観察は、学生のエンゲージメントとコミュニケーションの改善(例えば、所有感の向上、社会資本の増大など)に関する一般的な研究とともに、学生アセスメントデータを用いて、小学生の学習コミュニティの構築と評価についてさらなる研究を行うのにふさわしい方法である。
関連論文リスト
- Collaborative Active Learning in Conditional Trust Environment [1.3846014191157405]
複数の協力者が既存のデータやモデルを開示することなく、組み合わせた機械学習機能を活用して新しいドメインを探索するパラダイムである、協調型アクティブラーニングについて検討する。
このコラボレーションは、(a)直接モデルとデータ開示の必要性を排除し、プライバシとセキュリティの懸念に対処する、(b)直接データ交換なしで異なるデータソースとインサイトの使用を可能にする、(c)共有ラベリングコストを通じてコスト効率とリソース効率を促進する、といういくつかの利点を提供する。
論文 参考訳(メタデータ) (2024-03-27T10:40:27Z) - Evaluating Pedagogical Incentives in Undergraduate Computing: A Mixed Methods Approach Using Learning Analytics [0.0]
本稿では,ユニヴァーシティ・カレッジ・ロンドンにおける1年目のコンピュータ・モジュールにおける新たな教育的インセンティブの効果を評価する。
我々は、学習分析と質的データを組み合わせて、これらのインセンティブの有効性を学生のエンゲージメントを高めるために、混合手法を用いて評価する。
本稿では,データ駆動型客観分析を学生の視点と統合した,生徒のエンゲージメントに対する解釈可能かつ行動可能なモデルを提案する。
論文 参考訳(メタデータ) (2024-03-13T16:39:38Z) - Have Learning Analytics Dashboards Lived Up to the Hype? A Systematic
Review of Impact on Students' Achievement, Motivation, Participation and
Attitude [0.0]
学習分析ダッシュボード(LAD)が、学業成績を改善するという約束まで生きてきたという結論を支持する証拠はない。
LADは学生参加に比較的大きな影響を及ぼした。
LADの研究を前進させるためには、厳密な評価手法を使用し、学習構造を評価するための明確な基準を確立する必要がある。
論文 参考訳(メタデータ) (2023-12-22T20:12:52Z) - A Matter of Annotation: An Empirical Study on In Situ and Self-Recall Activity Annotations from Wearable Sensors [56.554277096170246]
In-the-wildデータ収集に焦点をあてたユーザスタディにおいて,一般的な4つのアノテーション手法の評価と対比を行う実験的検討を行った。
実際の記録プロセス中に参加者がアノテートするユーザ主導のin situアノテーションと、各日の終わりに参加者が振り返ってアノテートするリコールメソッドの両方に対して、参加者は自身のアクティビティクラスと対応するラベルを選択できる柔軟性を持っていた。
論文 参考訳(メタデータ) (2023-05-15T16:02:56Z) - Distantly-Supervised Named Entity Recognition with Adaptive Teacher
Learning and Fine-grained Student Ensemble [56.705249154629264]
NERモデルの堅牢性を改善するために,自己学習型教員学生フレームワークを提案する。
本稿では,2つの教員ネットワークからなる適応型教員学習を提案する。
微粒な学生アンサンブルは、教師モデルの各フラグメントを、生徒の対応するフラグメントの時間移動平均で更新し、各モデルフラグメントのノイズに対する一貫した予測を強化する。
論文 参考訳(メタデータ) (2022-12-13T12:14:09Z) - Responsible Active Learning via Human-in-the-loop Peer Study [88.01358655203441]
我々は,データプライバシを同時に保持し,モデルの安定性を向上させるために,Pear Study Learning (PSL) と呼ばれる責任あるアクティブラーニング手法を提案する。
まず,クラウドサイドのタスク学習者(教師)から未学習データを分離する。
トレーニング中、タスク学習者は軽量なアクティブ学習者に指示し、アクティブサンプリング基準に対するフィードバックを提供する。
論文 参考訳(メタデータ) (2022-11-24T13:18:27Z) - Better Teacher Better Student: Dynamic Prior Knowledge for Knowledge
Distillation [70.92135839545314]
本研究では,教師の持つ特徴の一部を,特徴蒸留前の先行知識として統合した動的事前知識(DPK)を提案する。
DPKは,教員モデルと生徒モデルのパフォーマンスを正に相関させ,より大きな教員を適用することで生徒の精度をさらに高めることができる。
論文 参考訳(メタデータ) (2022-06-13T11:52:13Z) - ACP++: Action Co-occurrence Priors for Human-Object Interaction
Detection [102.9428507180728]
ヒューマン・オブジェクト・インタラクション(HOI)検出のタスクにおける一般的な問題は、多数のHOIクラスが少数のラベル付き例しか持たないことである。
我々は、人間と物体の相互作用の間に自然の相関関係と反相関が存在することを観察した。
我々は、これらの先行知識を学習し、特に稀なクラスにおいて、より効果的な訓練に活用する手法を提案する。
論文 参考訳(メタデータ) (2021-09-09T06:02:50Z) - Assessing the Effectiveness of Using Live Interactions and Feedback to
Increase Engagement in Online Learning [0.0]
オンライン学習体験にツールとライブフィードバックを導入することが学習者のパフォーマンスに与える影響について検討した。
以上の結果から,ライブインタラクションとすべてのパフォーマンス指標との間には,統計的に有意な相関が認められた。
論文 参考訳(メタデータ) (2020-08-19T03:35:44Z) - Social Engagement versus Learning Engagement -- An Exploratory Study of
FutureLearn Learners [61.58283466715385]
大規模なオープンオンラインコース (MOOCs) は増加傾向にあるが、エンロリーのごく一部しかMOOCsを完了していない。
この研究は、MOOCにおける研究の進展とともに、学習者がピアとどのように相互作用するかに特に関係している。
この研究は、社会的構成主義的アプローチを採用し、協調学習を促進するFutureLearnプラットフォーム上で行われた。
論文 参考訳(メタデータ) (2020-08-11T16:09:10Z) - Learning End-to-End Action Interaction by Paired-Embedding Data
Augmentation [10.857323240766428]
新しいInteractive Action Translation (IAT)タスクは、ラベルなしのインタラクティブなペアからエンドツーエンドのアクションインタラクションを学ぶことを目的としている。
Paired-Embedding (PE) 法を提案する。
2つのデータセットの実験結果から,本手法の優れた効果と幅広い応用可能性が確認された。
論文 参考訳(メタデータ) (2020-07-16T01:54:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。