Context-aware knowledge graph framework for traffic speed forecasting using graph neural network
- URL: http://arxiv.org/abs/2407.17703v1
- Date: Thu, 25 Jul 2024 01:52:12 GMT
- Title: Context-aware knowledge graph framework for traffic speed forecasting using graph neural network
- Authors: Yatao Zhang, Yi Wang, Song Gao, Martin Raubal,
- Abstract summary: This study proposes a context-aware knowledge graph (CKG) framework to enhance traffic speed forecasting by modeling spatial and temporal contexts.
A CKG-GNN model, combining the CKG, dual-view multi-head self-attention (MHSA), and neural network (GNN), is then designed to predict traffic speed using context-aware representations.
The CKG-GNN model surpasses benchmark models, achieving an average MAE of $3.46pm0.01$ and a MAPE of $14.76pm0.09%$ for traffic speed predictions from 10 to 120 minutes.
- Score: 5.96412390867876
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Human mobility is intricately influenced by urban contexts spatially and temporally, constituting essential domain knowledge in understanding traffic systems. While existing traffic forecasting models primarily rely on raw traffic data and advanced deep learning techniques, incorporating contextual information remains underexplored due to the lack of effective integration frameworks and the complexity of urban contexts. This study proposes a novel context-aware knowledge graph (CKG) framework to enhance traffic speed forecasting by effectively modeling spatial and temporal contexts. Employing a relation-dependent integration strategy, the framework generates context-aware representations from the spatial and temporal units of CKG to capture spatio-temporal dependencies of urban contexts. A CKG-GNN model, combining the CKG, dual-view multi-head self-attention (MHSA), and graph neural network (GNN), is then designed to predict traffic speed using these context-aware representations. Our experiments demonstrate that CKG's configuration significantly influences embedding performance, with ComplEx and KG2E emerging as optimal for embedding spatial and temporal units, respectively. The CKG-GNN model surpasses benchmark models, achieving an average MAE of $3.46\pm0.01$ and a MAPE of $14.76\pm0.09\%$ for traffic speed predictions from 10 to 120 minutes. The dual-view MHSA analysis reveals the crucial role of relation-dependent features from the context-based view and the model's ability to prioritize recent time slots in prediction from the sequence-based view. The CKG framework's model-agnostic nature suggests its potential applicability in various applications of intelligent transportation systems. Overall, this study underscores the importance of incorporating domain-specific contexts into traffic forecasting and merging context-aware knowledge graphs with neural networks to enhance accuracy.
Related papers
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - SFANet: Spatial-Frequency Attention Network for Weather Forecasting [54.470205739015434]
Weather forecasting plays a critical role in various sectors, driving decision-making and risk management.
Traditional methods often struggle to capture the complex dynamics of meteorological systems.
We propose a novel framework designed to address these challenges and enhance the accuracy of weather prediction.
arXiv Detail & Related papers (2024-05-29T08:00:15Z) - ST-MLP: A Cascaded Spatio-Temporal Linear Framework with
Channel-Independence Strategy for Traffic Forecasting [47.74479442786052]
Current research on Spatio-Temporal Graph Neural Networks (STGNNs) often prioritizes complex designs, leading to computational burdens with only minor enhancements in accuracy.
We propose ST-MLP, a concise cascaded temporal-temporal model solely based on Multi-Layer Perceptron (MLP) modules and linear layers.
Empirical results demonstrate that ST-MLP outperforms state-of-the-art STGNNs and other models in terms of accuracy and computational efficiency.
arXiv Detail & Related papers (2023-08-14T23:34:59Z) - STG4Traffic: A Survey and Benchmark of Spatial-Temporal Graph Neural Networks for Traffic Prediction [9.467593700532401]
This paper provides a systematic review of graph learning strategies and commonly used graph convolution algorithms.
We then conduct a comprehensive analysis of the strengths and weaknesses of recently proposed spatial-temporal graph network models.
We build a study called STG4Traffic using the deep learning framework PyTorch to establish a standardized and scalable benchmark on two types of traffic datasets.
arXiv Detail & Related papers (2023-07-02T06:56:52Z) - Adaptive Hierarchical SpatioTemporal Network for Traffic Forecasting [70.66710698485745]
We propose an Adaptive Hierarchical SpatioTemporal Network (AHSTN) to promote traffic forecasting.
AHSTN exploits the spatial hierarchy and modeling multi-scale spatial correlations.
Experiments on two real-world datasets show that AHSTN achieves better performance over several strong baselines.
arXiv Detail & Related papers (2023-06-15T14:50:27Z) - A spatial-temporal short-term traffic flow prediction model based on
dynamical-learning graph convolution mechanism [0.0]
Short-term traffic flow prediction is a vital branch of the Intelligent Traffic System (ITS) and plays an important role in traffic management.
Graph convolution network (GCN) is widely used in traffic prediction models to better deal with the graphical structure data of road networks.
To deal with this drawback, this paper proposes a novel location graph convolutional network (Location-GCN)
arXiv Detail & Related papers (2022-05-10T09:19:12Z) - Spatio-Temporal Latent Graph Structure Learning for Traffic Forecasting [6.428566223253948]
We propose a new traffic forecasting framework--S-Temporal Latent Graph Structure Learning networks (ST-LGSL)
The model employs a graph based on Multilayer perceptron and K-Nearest Neighbor, which learns the latent graph topological information from the entire data.
With the dependencies-kNN based on ground-truth adjacency matrix and similarity metric in kNN, ST-LGSL aggregates the top focusing on geography and node similarity.
arXiv Detail & Related papers (2022-02-25T10:02:49Z) - STJLA: A Multi-Context Aware Spatio-Temporal Joint Linear Attention
Network for Traffic Forecasting [7.232141271583618]
We propose a novel deep learning model for traffic forecasting named inefficient-Context Spatio-Temporal Joint Linear Attention (SSTLA)
SSTLA applies linear attention to a joint graph to capture global dependence between alltemporal- nodes efficiently.
Experiments on two real-world traffic datasets, England and Temporal7, demonstrate that our STJLA can achieve 9.83% and 3.08% 3.08% accuracy in MAE measure over state-of-the-art baselines.
arXiv Detail & Related papers (2021-12-04T06:39:18Z) - A Comparative Study of Using Spatial-Temporal Graph Convolutional
Networks for Predicting Availability in Bike Sharing Schemes [13.819341724635319]
We present an Attention-based ST-GCN (AST-GCN) for predicting the number of available bikes in bike-sharing systems in cities.
Our experimental results are presented using two real-world datasets, Dublinbikes and NYC-Citi Bike.
arXiv Detail & Related papers (2021-04-21T17:13:29Z) - Spatio-temporal Modeling for Large-scale Vehicular Networks Using Graph
Convolutional Networks [110.80088437391379]
A graph-based framework called SMART is proposed to model and keep track of the statistics of vehicle-to-temporal (V2I) communication latency across a large geographical area.
We develop a graph reconstruction-based approach using a graph convolutional network integrated with a deep Q-networks algorithm.
Our results show that the proposed method can significantly improve both the accuracy and efficiency for modeling and the latency performance of large vehicular networks.
arXiv Detail & Related papers (2021-03-13T06:56:29Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
We propose Geographic and Long term Temporal Graph Convolutional Recurrent Neural Network (GLT-GCRNN) for traffic forecasting.
In this work, we propose a novel framework for traffic forecasting that learns the rich interactions between roads sharing similar geographic or longterm temporal patterns.
arXiv Detail & Related papers (2020-04-23T03:50:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.