論文の概要: RDFGraphGen: A Synthetic RDF Graph Generator based on SHACL Constraints
- arxiv url: http://arxiv.org/abs/2407.17941v1
- Date: Thu, 25 Jul 2024 10:58:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-26 14:18:40.998877
- Title: RDFGraphGen: A Synthetic RDF Graph Generator based on SHACL Constraints
- Title(参考訳): RDFGraphGen: SHACL制約に基づく合成RDFグラフジェネレータ
- Authors: Marija Vecovska, Milos Jovanovik,
- Abstract要約: 本稿では、SHACL制約に基づく合成RDFグラフのドメイン依存生成であるRDFGraphGenを紹介する。
RDFGraphGenの目的は、ベンチマーク、テスト、品質管理、トレーニングなどの目的で、小規模、中規模のRDF知識グラフを作成することである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces RDFGraphGen, a general-purpose, domain-independent generator of synthetic RDF graphs based on SHACL constraints. The Shapes Constraint Language (SHACL) is a W3C standard which specifies ways to validate data in RDF graphs, by defining constraining shapes. However, even though the main purpose of SHACL is validation of existing RDF data, in order to solve the problem with the lack of available RDF datasets in multiple RDF-based application development processes, we envisioned and implemented a reverse role for SHACL: we use SHACL shape definitions as a starting point to generate synthetic data for an RDF graph. The generation process involves extracting the constraints from the SHACL shapes, converting the specified constraints into rules, and then generating artificial data for a predefined number of RDF entities, based on these rules. The purpose of RDFGraphGen is the generation of small, medium or large RDF knowledge graphs for the purpose of benchmarking, testing, quality control, training and other similar purposes for applications from the RDF, Linked Data and Semantic Web domain. RDFGraphGen is open-source and is available as a ready-to-use Python package.
- Abstract(参考訳): 本稿では、SHACL制約に基づく合成RDFグラフの汎用的ドメイン非依存生成であるRDFGraphGenを紹介する。
形状制約言語 (Shapes Constraint Language, SHACL) は、制約形状を定義してRDFグラフ内のデータを検証する方法を指定するW3C標準である。
しかし、SHACLの主な目的は、既存のRDFデータの検証であるが、複数のRDFベースのアプリケーション開発プロセスで利用可能なRDFデータセットが不足している問題を解決するため、SHACLの逆の役割を構想し、実装した。
生成プロセスは、SHACL形状から制約を抽出し、指定された制約をルールに変換し、これらのルールに基づいて、予め定義されたRDFエンティティの数のための人工データを生成する。
RDFGraphGenの目的は、RDF、Linked Data、Semantic Webドメインからのアプリケーションのためのベンチマーク、テスト、品質管理、トレーニングなどの目的で、小規模、中規模のRDF知識グラフを作成することである。
RDFGraphGenはオープンソースで、Pythonパッケージとして利用可能である。
関連論文リスト
- VisRAG: Vision-based Retrieval-augmented Generation on Multi-modality Documents [66.42579289213941]
Retrieval-augmented Generation (RAG) は、大規模言語モデルが外部知識ソースを生成に活用できる効果的な手法である。
本稿では,視覚言語モデル(VLM)に基づくRAGパイプラインを構築することで,この問題に対処するVisRAGを紹介する。
このパイプラインでは、まず文書を解析してテキストを得る代わりに、VLMを画像として直接埋め込んで、VLMの生成を強化する。
論文 参考訳(メタデータ) (2024-10-14T15:04:18Z) - AutoRDF2GML: Facilitating RDF Integration in Graph Machine Learning [9.408189129889006]
AutoRDF2GMLは、RDFデータをグラフ機械学習タスクに適したデータ表現に変換するように設計されたフレームワークである。
大規模RDF知識グラフから作成したグラフ機械学習のための新しいベンチマークデータセットを4つ提示する。
論文 参考訳(メタデータ) (2024-07-26T13:44:06Z) - RAFT: Adapting Language Model to Domain Specific RAG [75.63623523051491]
本稿では、ドメイン内の「オープンブック」設定において、モデルが質問に答える能力を改善するためのトレーニングレシピであるRetrieval Augmented FineTuning(RAFT)を紹介する。
RAFTは、質問に答える助けとなる関連文書から、動詞の正しいシーケンスを引用することで、これを達成します。
RAFTは、PubMed、HotpotQA、Gorillaデータセット全体のモデルのパフォーマンスを一貫して改善する。
論文 参考訳(メタデータ) (2024-03-15T09:26:02Z) - DDF-HO: Hand-Held Object Reconstruction via Conditional Directed
Distance Field [82.81337273685176]
DDF-HOは、DDF(Directed Distance Field)を形状表現として活用する新しいアプローチである。
我々はランダムに複数の光線をサンプリングし、新しい2D線に基づく特徴集約方式を導入することにより、局所的・大域的特徴を収集する。
合成および実世界のデータセットの実験は、DFF-HOが全てのベースライン手法を大きなマージンで一貫して上回っていることを示している。
論文 参考訳(メタデータ) (2023-08-16T09:06:32Z) - Uncertainty-Aware Source-Free Adaptive Image Super-Resolution with Wavelet Augmentation Transformer [60.31021888394358]
Unsupervised Domain Adaptation (UDA)は、現実世界の超解像(SR)における領域ギャップ問題に効果的に対処できる
本稿では,画像SR(SODA-SR)のためのSOurce-free Domain Adaptationフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-31T03:14:44Z) - Instance Relation Graph Guided Source-Free Domain Adaptive Object
Detection [79.89082006155135]
教師なしドメイン適応(Unsupervised Domain Adaptation, UDA)は、ドメインシフトの問題に取り組むための効果的なアプローチである。
UDAメソッドは、ターゲットドメインの一般化を改善するために、ソースとターゲット表現を整列させようとする。
Source-Free Adaptation Domain (SFDA)設定は、ソースデータへのアクセスを必要とせずに、ターゲットドメインに対してソーストレーニングされたモデルを適用することで、これらの懸念を軽減することを目的としている。
論文 参考訳(メタデータ) (2022-03-29T17:50:43Z) - Skip Vectors for RDF Data: Extraction Based on the Complexity of Feature
Patterns [0.0]
Resource Description Framework(RDF)は、Web上のリソースの属性や関連性などのメタデータを記述するためのフレームワークである。
本研究では,近隣のエッジとノードの様々な組み合わせを抽出することにより,RDFグラフ内の各リソースの特徴を表す新しい特徴ベクトル(スキップベクトル)を提案する。
分類タスクは、SVM、k-nearest neighbors法、ニューラルネットワーク、ランダムフォレスト、AdaBoostなどの従来の機械学習アルゴリズムに、各リソースの低次元スキップベクトルを適用することで行うことができる。
論文 参考訳(メタデータ) (2022-01-06T10:07:49Z) - Shape Fragments [2.5922360296344396]
ShExやSHACLのようなRDFグラフの制約言語では、ノードとその特性に対する制約は"shapes"として知られている。
本稿では, RDFグラフから, いわゆる形状フラグメントであるサブグラフを抽出するために, 形状の集合を用いた新しい利用法を提案する。
論文 参考訳(メタデータ) (2021-12-22T11:01:50Z) - RDF-to-Text Generation with Reinforcement Learning Based Graph-augmented
Structural Neural Encoders [34.774049199809426]
本稿では, RDF三重項における局所構造情報と大域構造情報の両方を学習するために, 2つのグラフ拡張構造型ニューラルエンコーダを組み合わせたモデルを提案する。
テキストの忠実性をさらに向上するため,情報抽出に基づく強化学習報酬を革新的に導入する。
論文 参考訳(メタデータ) (2021-11-20T08:41:54Z) - GenURL: A General Framework for Unsupervised Representation Learning [58.59752389815001]
教師なし表現学習(URL)は、教師なしの高次元データのコンパクトな埋め込みを学習する。
本稿では,様々なURLタスクにスムーズに適応可能な類似性ベースの統合URLフレームワークGenURLを提案する。
実験により、GenURLは、自己教師付き視覚学習、無教師付き知識蒸留(KD)、グラフ埋め込み(GE)、次元縮小において、一貫した最先端性能を達成することが示された。
論文 参考訳(メタデータ) (2021-10-27T16:24:39Z) - RDFFrames: Knowledge Graph Access for Machine Learning Tools [6.50725902438059]
ナレッジグラフのための機械学習ツールは、データベースシステムを使用することの明らかな利点にもかかわらず、SPARQLを使用しない。
これは、データモデルとプログラミングスタイルの点で、SPARQLと機械学習ツールのミスマッチのためです。
本稿では,機械学習ソフトウェアスタックからの知識グラフのインターフェースを提供するフレームワークであるRDFFramesを提案する。
論文 参考訳(メタデータ) (2020-02-10T09:39:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。