論文の概要: RDFGraphGen: An RDF Graph Generator based on SHACL Shapes
- arxiv url: http://arxiv.org/abs/2407.17941v2
- Date: Mon, 26 May 2025 09:36:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-27 16:58:41.814759
- Title: RDFGraphGen: An RDF Graph Generator based on SHACL Shapes
- Title(参考訳): RDFGraphGen: SHACL形状に基づくRDFグラフジェネレータ
- Authors: Milos Jovanovik, Marija Vecovska, Maxime Jakubowski, Katja Hose,
- Abstract要約: 合成RDFグラフを生成するために、SHACL形状で提供される特徴を利用したオープンソースのRDFグラフ生成器であるRDFGraphGenを提案する。
RDFGraphGenは、グラフ構造、値制約、分散を備えたドメインに依存しない。
以上の結果から,RDFGraphGenは拡張性が高く,任意の領域で小型,中型,大型のRDFグラフを生成することができることがわかった。
- 参考スコア(独自算出の注目度): 2.7213277957181328
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Developing and testing modern RDF-based applications often requires access to RDF datasets with certain characteristics. Unfortunately, it is very difficult to publicly find domain-specific knowledge graphs that conform to a particular set of characteristics. Hence, in this paper we propose RDFGraphGen, an open-source RDF graph generator that uses characteristics provided in the form of SHACL (Shapes Constraint Language) shapes to generate synthetic RDF graphs. RDFGraphGen is domain-agnostic, with configurable graph structure, value constraints, and distributions. It also comes with a number of predefined values for popular schema.org classes and properties, for more realistic graphs. Our results show that RDFGraphGen is scalable and can generate small, medium, and large RDF graphs in any domain.
- Abstract(参考訳): 最新のRDFベースのアプリケーションの開発とテストは、特定の特性を持つRDFデータセットへのアクセスを必要とすることが多い。
残念ながら、特定の特徴セットに適合するドメイン固有の知識グラフを公に見つけることは非常に困難である。
そこで本稿では,SHACL(Shapes Constraint Language)形式で提供される特徴を利用して合成RDFグラフを生成するオープンソースのRDFグラフ生成器であるRDFGraphGenを提案する。
RDFGraphGenは、設定可能なグラフ構造、値制約、分散を備えた、ドメインに依存しない。
また、一般的なschema.orgクラスやプロパティに対して、より現実的なグラフのために、多くの事前定義された値も付属している。
以上の結果から,RDFGraphGenは拡張性が高く,任意の領域で小型,中型,大型のRDFグラフを生成することができることがわかった。
関連論文リスト
- RGL: A Graph-Centric, Modular Framework for Efficient Retrieval-Augmented Generation on Graphs [58.10503898336799]
完全なRAGパイプラインをシームレスに統合するモジュラーフレームワークであるRAG-on-Graphs Library(RGL)を紹介した。
RGLは、さまざまなグラフフォーマットをサポートし、必須コンポーネントの最適化実装を統合することで、重要な課題に対処する。
評価の結果,RGLはプロトタイピングプロセスの高速化だけでなく,グラフベースRAGシステムの性能や適用性の向上も図っている。
論文 参考訳(メタデータ) (2025-03-25T03:21:48Z) - Retrieval-Augmented Generation with Graphs (GraphRAG) [84.29507404866257]
Retrieval-augmented Generation (RAG) は、追加情報を取得することによって下流タスクの実行を向上させる強力な技術である。
グラフは、その固有の「エッジで接続されたノード」の性質により、巨大な異種情報と関係情報を符号化する。
従来のRAGとは異なり、多種多様な形式とドメイン固有の関係知識のようなグラフ構造化データのユニークさは、異なるドメインでGraphRAGを設計する際、ユニークで重要な課題を生じさせる。
論文 参考訳(メタデータ) (2024-12-31T06:59:35Z) - VisRAG: Vision-based Retrieval-augmented Generation on Multi-modality Documents [66.42579289213941]
Retrieval-augmented Generation (RAG) は、大規模言語モデルが外部知識ソースを生成に活用できる効果的な手法である。
本稿では,視覚言語モデル(VLM)に基づくRAGパイプラインを構築することで,この問題に対処するVisRAGを紹介する。
このパイプラインでは、まず文書を解析してテキストを得る代わりに、VLMを画像として直接埋め込んで、VLMの生成を強化する。
論文 参考訳(メタデータ) (2024-10-14T15:04:18Z) - AutoRDF2GML: Facilitating RDF Integration in Graph Machine Learning [9.408189129889006]
AutoRDF2GMLは、RDFデータをグラフ機械学習タスクに適したデータ表現に変換するように設計されたフレームワークである。
大規模RDF知識グラフから作成したグラフ機械学習のための新しいベンチマークデータセットを4つ提示する。
論文 参考訳(メタデータ) (2024-07-26T13:44:06Z) - RAFT: Adapting Language Model to Domain Specific RAG [75.63623523051491]
本稿では、ドメイン内の「オープンブック」設定において、モデルが質問に答える能力を改善するためのトレーニングレシピであるRetrieval Augmented FineTuning(RAFT)を紹介する。
RAFTは、質問に答える助けとなる関連文書から、動詞の正しいシーケンスを引用することで、これを達成します。
RAFTは、PubMed、HotpotQA、Gorillaデータセット全体のモデルのパフォーマンスを一貫して改善する。
論文 参考訳(メタデータ) (2024-03-15T09:26:02Z) - DDF-HO: Hand-Held Object Reconstruction via Conditional Directed
Distance Field [82.81337273685176]
DDF-HOは、DDF(Directed Distance Field)を形状表現として活用する新しいアプローチである。
我々はランダムに複数の光線をサンプリングし、新しい2D線に基づく特徴集約方式を導入することにより、局所的・大域的特徴を収集する。
合成および実世界のデータセットの実験は、DFF-HOが全てのベースライン手法を大きなマージンで一貫して上回っていることを示している。
論文 参考訳(メタデータ) (2023-08-16T09:06:32Z) - Uncertainty-Aware Source-Free Adaptive Image Super-Resolution with Wavelet Augmentation Transformer [60.31021888394358]
Unsupervised Domain Adaptation (UDA)は、現実世界の超解像(SR)における領域ギャップ問題に効果的に対処できる
本稿では,画像SR(SODA-SR)のためのSOurce-free Domain Adaptationフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-31T03:14:44Z) - Instance Relation Graph Guided Source-Free Domain Adaptive Object
Detection [79.89082006155135]
教師なしドメイン適応(Unsupervised Domain Adaptation, UDA)は、ドメインシフトの問題に取り組むための効果的なアプローチである。
UDAメソッドは、ターゲットドメインの一般化を改善するために、ソースとターゲット表現を整列させようとする。
Source-Free Adaptation Domain (SFDA)設定は、ソースデータへのアクセスを必要とせずに、ターゲットドメインに対してソーストレーニングされたモデルを適用することで、これらの懸念を軽減することを目的としている。
論文 参考訳(メタデータ) (2022-03-29T17:50:43Z) - Skip Vectors for RDF Data: Extraction Based on the Complexity of Feature
Patterns [0.0]
Resource Description Framework(RDF)は、Web上のリソースの属性や関連性などのメタデータを記述するためのフレームワークである。
本研究では,近隣のエッジとノードの様々な組み合わせを抽出することにより,RDFグラフ内の各リソースの特徴を表す新しい特徴ベクトル(スキップベクトル)を提案する。
分類タスクは、SVM、k-nearest neighbors法、ニューラルネットワーク、ランダムフォレスト、AdaBoostなどの従来の機械学習アルゴリズムに、各リソースの低次元スキップベクトルを適用することで行うことができる。
論文 参考訳(メタデータ) (2022-01-06T10:07:49Z) - Shape Fragments [2.5922360296344396]
ShExやSHACLのようなRDFグラフの制約言語では、ノードとその特性に対する制約は"shapes"として知られている。
本稿では, RDFグラフから, いわゆる形状フラグメントであるサブグラフを抽出するために, 形状の集合を用いた新しい利用法を提案する。
論文 参考訳(メタデータ) (2021-12-22T11:01:50Z) - RDF-to-Text Generation with Reinforcement Learning Based Graph-augmented
Structural Neural Encoders [34.774049199809426]
本稿では, RDF三重項における局所構造情報と大域構造情報の両方を学習するために, 2つのグラフ拡張構造型ニューラルエンコーダを組み合わせたモデルを提案する。
テキストの忠実性をさらに向上するため,情報抽出に基づく強化学習報酬を革新的に導入する。
論文 参考訳(メタデータ) (2021-11-20T08:41:54Z) - GenURL: A General Framework for Unsupervised Representation Learning [58.59752389815001]
教師なし表現学習(URL)は、教師なしの高次元データのコンパクトな埋め込みを学習する。
本稿では,様々なURLタスクにスムーズに適応可能な類似性ベースの統合URLフレームワークGenURLを提案する。
実験により、GenURLは、自己教師付き視覚学習、無教師付き知識蒸留(KD)、グラフ埋め込み(GE)、次元縮小において、一貫した最先端性能を達成することが示された。
論文 参考訳(メタデータ) (2021-10-27T16:24:39Z) - RDFFrames: Knowledge Graph Access for Machine Learning Tools [6.50725902438059]
ナレッジグラフのための機械学習ツールは、データベースシステムを使用することの明らかな利点にもかかわらず、SPARQLを使用しない。
これは、データモデルとプログラミングスタイルの点で、SPARQLと機械学習ツールのミスマッチのためです。
本稿では,機械学習ソフトウェアスタックからの知識グラフのインターフェースを提供するフレームワークであるRDFFramesを提案する。
論文 参考訳(メタデータ) (2020-02-10T09:39:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。